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Abstract



As it is well known, from the (adjacency or Laplacian)
spectrum of a graph we can infer some properties about its
combinatorial structure. Some examples are the diameter of
the graph, its independence number, some distance-regularity
properties, etc. In order to derive such results, different
families of polynomials, obtained from the spectrum, have
shown to be very useful. In this talk, we aim to present some
of these families, together with their applications.



Preliminaries



Graphs and spectra

Let G = (V,E) be a graph with n = |V | vertices, m = |E| edges, and
adjacency matrix A with spectrum

spG = {θ0, θm1
1 , · · · , θmd

d }.

where θ0 > θ1 > · · · > θd.
When the eigenvalues are presented with possible repetitions, we shall
indicate them by

evG : λ1 ≥ λ2 ≥ · · · ≥ λn.



Some combinatorial graph properties

Given a graph G. . .

I The diameter D is the maximum distance between vertices

I The k-independence of G, αk = αk(G), is the size of the largest set
of vertices such that any two vertices in the set are at distance larger
than k (in particular, α1 = α is the independence number of a
graph)

I G is distance-regular if the number of `-walks between two vertices
only depend of the distance between them.
Alternatively, G, with diameter d and distance matrices
A0(= I), A1(= A), . . . , Ad, is distance-regular if and only if there
exists sequence of (orthogonal) polynomials p0, p1, . . . , pd such that

Ai = pi(A), i = 0, 1, . . . , d.

I The resistance between two vertices is the electric resistance
between them assuming that all the edges are unit resistors.

...



The alternating polynomials



The alternating polynomials

Let G be a (connected) graph with distinct eigenvalues
θ0 > θ1 > · · · > θd. The k-alternating polynomial Pk(x) is the
polynomial p ∈ Rk(x) satisfying

I |p(θi)| ≤ 1 for all i = 1, ..., d.

I p(θ0) is maximum.



Computing the alternating polynomials

The k-alternating polynomial Pk ∈ Rk[x] is the polynomial defined by
Pk(θi) = xi, 1 ≤ i ≤ d, where the vector (x1, x2, . . . , xd) is a solution of
the following linear programming problem:

maximize x0
with constraints f [θ0, . . . , θm] = 0, m = k + 1, . . . , d

xi ≤ 1, xi ≥ −1i = 1, . . . , d,

where f [θ0, . . . , θi] is the m-th divided differences of Newton

interpolation, f [θ0, . . . , θi] =
f [θ1,...,θi]−f [θ0,...,θi−1]

θi−θ0 , with
f [θi] = Pk(θi) = xi, 0 ≤ i ≤ d.



An example with d = 5: The hypercube Q5

G = Q5 has diameter d = 5,
and d+ 1 = 6 distinct eigenvalues evQ5 = {−5,−3,−1, 1, 3, 5}.



An example with d = 5

Let us take the following points

θ0 = 5, θ1 = 3, θ2 = 1, θ3 = −1, θ4 = −3, θ5 = −5.

Then, the corresponding k-alternating polynomials and their values at the
mesh points (θ5, θ4, ..., θ1), and θ0 are:

P4(x) =
1

24
(x4 + 4x3 − 10x2 − 28x+ 9), (1,−1, 1,−1, 1), 31;

P3(x) =
1

16
(x3 + 3x2 − 9x− 11), (−1, 1, 0,−1, 1), 9;

P2(x) =
1

8
(x2 + 2x− 7), (1,−1

2
,−1,−1

2
, 1), 72;

P1(x) =
1

4
(x+ 1), (−1,−1

2
, 0,

1

2
, 1), 32.

Note that, in this example, Pk takes k + 1 alternating values ±1 at the
mesh points other than θ0, as does the Chebychev polynomial Tk in
[−1,+1].



The alternating polynomials of Q5



The diameter D vs. Pk

The polynomial Pk(x) is known to be unique, and it was first used to
study the relationship between the spectrum of a graph and its diameter.

Theorem (F., Garriga, Yebra, 1996)
Let G be a graph on n vertices, with distinct eigenvalues θ0 > · · · > θd.
Let ν be the (positive) θ0-eigenvector with minimum component 1. Let
Pk(x) be the k-alternating polynomial. Then,

Pk(θ0) > ‖ν‖2 − 1 ⇒ D(G) ≤ k.



The k-independece number αk vs. Pk

Theorem (F., 1997)
Let G be a d-regular graph on n vertices, with distinct eigenvalues
θ0 > · · · > θd and let Pk(x) be its k-alternating polynomial. Then,

αk ≤
2n

Pk(θ0) + 1
.

Moreover, G is an r-antipodal distance-regular graph if and only if its
distance-d graph Gd is constituted by disjoint copies of the complete
graph Kr with

r = αd =
2n

Pk(θ0) + 1
= 2n

(
d∑
i=0

π0
πi

)−1
.



The predistance polynomials



The predistance polynomials

Given a graph G with spectrum as above, the predistance polynomials
p0, . . . , pd, (F. and Garriga, 1997), are the orthogonal polynomials with
respect to the scalar product

〈f, g〉G =
1

n
tr(f(A)g(A)) =

1

n

d∑
i=0

mif(λi)g(λi),

normalized in such a way that ‖pi‖2G = pi(λ0) (we know that pi(λ0) > 0
for every i = 0, . . . , d).



Properties

. . . with properties:

1. Orthogonal sequence

dgr pi = i, (i = 0, . . . , d), pi ⊥ pj , (i 6= j).

2. Interlacing of zeros

3. Three-term recurrence and specific values
xpi = βi−1pi−1 + αipi + γi+1pi+1, (βi−1 = γd+1 = 0),

4. Preintersection numbers

5. Sum polynomials

6. Recovering the spectrum

7. . . .



Distance polynomials

If G is distance-regular, the predistance-polynomials become, respectively,
the distance polynomials p0, p1, . . . , pd giving the distance matrices:

pi(A) = Ai i = 0, 1, . . . , d;

and the number of vertices at distance i from every vertex u is:

ki = |Gi(u)| = pi(λ0), i = 0, . . . , d(= D).



The spectral excess theorem (SPET)

Theorem (F., Garriga, 1997)
A connected regular graph with d+ 1 distinct eigenvalues is
distance-regular if and only if its average excess equals its spectral excess:

kd = pd(λ0) = n

(
d∑
i=0

π2
0

m(λi)π2
i

)−1
,

where πi =
∏
j 6=i |λi − λj | for i = 0, 1, . . . , d.



The Hoffman graph



A generalization of the SPET

Theorem (Dalfó, Van Dam, F., Garriga, Gorissen, 2011)
Let G be a regular graph with n vertices, diameter D, and d+ 1 distinct
eigenvalues. For some integer j ≤ D, let qj = p0 + · · ·+ pj ,
Sj = A0 + · · ·+Aj , and sj = ‖Sj‖2 = 1

n

∑
u∈V sj(u). Then,

qj(λ0) ≤ sj ,

and the equality holds if and only if

qj(A) = Sj .

Moreover, G is m-partially distance-regular if and only if equality holds
for j = m− 1,m.



The minor polynomials



The minor polynomials

Let G = (V,E) be a graph with spectrum
spG = {θ0 > θm1

1 > · · · > θmd

d }.
The k-minor polynomial pk ∈ Rk[x] is the polynomial defined by
pk(θ0) = 1 and pk(θi) = xi, 1 ≤ i ≤ d, where the vector (x1, x2, . . . , xd)
is a solution of the following linear programming problem:

minimize
∑d
i=0mip(θi)

with constraints f [θ0, . . . , θm] = 0, m = k + 1, . . . , d
xi ≥ 0, i = 1, . . . , d,

where f [θ0, . . . , θi] is the m-th divided differences of Newton

interpolation, f [θ0, . . . , θi] =
f [θ1,...,θi]−f [θ0,...,θi−1]

θi−θ0 , with
f [θi] = pk(θi) = xi, 0 ≤ i ≤ d.



The Hamming graph H(2, 7)

The Hamming graph H(2, 7) or 7− cube is a distance-regular graph with
n = 27 vertices, degree k = 7, diameter D = 7, and spectrum

71, 57, 321, 135, −135, −321, −57, −71

k x7 x6 x5 x4 x3 x2 x1 x0
1 0 1/7 2/7 3/7 4/7 5/7 6/7 1

2 1 1/2 1/6 0 0 1/6 1/2 1

3 0 1/14 1/21 0 0 5/42 3/7 1

4 2/9 0 0 1/45 0 0 2/9 1

5 0 1/35 0 0 0 0 6/35 1

6 1 0 0 0 0 0 0 1

7 0 0 0 0 0 0 0 1

Table: Values xi = pk(θi) of the k-minor polynomials of the Hamming graph
H(2, 7).



The minor polynomials of the Hamming graph H(2, 7)



The Johnson graph J(14, 7)

The Johnson graph J(14, 7) is a distance regular graph with n =
(
14
7

)
vertices, degree k = 49, diameter D = 7, and spectrum:

i 0 1 2 3 4 5 6 7

θi 49 35 23 13 5 −1 −5 −7

mi 1 13 77 273 637 1001 1001 429

Table: Eigenvalues and multiplicities of the Johnson graph J(14, 7).



The minor polynomials of the Johnson graph graph
J(14, 7)



The k-independence number vs pk

Theorem
Let G be a k-partially walk-regular graph with n vertices, adjacency
matrix A, and spectrum

spG = {θm0
0 , . . . , θmd

d }.

Let pk ∈ Rk[x] be the k-minor polynomial. Then,

αk ≤ tr pk(A) =

d∑
i=0

mipk(θi). (1)



k 3 4 5 6 7

Pk(θ0) 1115/81 485/9 8629/25 3431 –

qk(θ0) 1716 2941 3382 3431 3432

Bound from Theorem 2 464 125 20 2 –

Bound from Theorem 5 19 6 2 2 1

Table: Comparison of the bounds for αk in the Johnson graph J(14, 7).

k 1 2 3 4 5 6 7

Bound from Theorem 5 64 16 8 3 2 2 1

Table: Bounds for αk in the Hamming graph H(2, 7).



Two particular cases

I When k = 1, α1 coincides with the standard independence number
α. In this case the minor polynomial is p1(x) =

x−θd
θ0−θd and we obtain

α ≤ n −θd
θ0 − θd

,

which is known as the Hoffman’s bound.

I When k = 2, the minor polynomial turs out to be

p2(x) =
(x−θi)(x−θi−1)
(θd−θi)(θd−θi−1)

, where θi be the largest eigenvalue such

that θi ≤ −1. Then, the 2-independence number satisfies

α2 ≤ n
θ0 + θiθi−1

(θ0 − θi)(θ0 − θi−1)
.



Open problems (for the last family)

I Closed formulas for k > 2.

I Study the integer bound vs. cases of equality.

I Application to the existence of perfect codes.

I Relations with other parameters (diameter, etc.).

I Relation with the alternating polynomials.
...
I
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