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Stochastic networks with edge failures

Model: undirected pseudograph (multiple edges and loops are
allowed)

Nodes are perfectly reliable

At any given time, each edge e has a probability pe of being
operational, and a probability qe = 1− pe of failing (pe is constant
throughout time)

pe is independent from pf , for all edges f 6= e

No repair is allowed

For simplicity, we may assume that pe is equal for all edges e

We must define some measure of reliability (e.g. connectivity of
the network, diameter, etc.)
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Assumptions about the link capacity

We will assume that the capacity of the links is infinite, or
alternatively, that the flow of information travelling through the links
is negligible in comparison with their capacity

If this condition fails, then it can lead to cascading failures

In the financial system they talk about systemic risk

Examples: The power outages in the US and India, in 2012; the
financial crisis of 2008, etc.
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Three reliability problems

Two-terminal reliability:
Given two distinguished vertices, s and t , and given the probability
p of an edge being operational, what is the probability that there
exists an operational path between s and t?

All-terminal reliability:
Given the probability p of an edge being operational, what is the
probability that there exists an operational path between any two
nodes u and v?

k -terminal reliability:
Given the probability p of an edge being operational, and a set K of
distinguished nodes, with |K | = k , what is the probability that there
exists an operational path between any two nodes u, v ∈ K ?
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Complexity of the reliability problems

All three problems (two-terminal, all-terminal, and k -terminal
reliability) are #P-complete

The class #P consists of the problems that can be solved by a
non-deterministic counting Turing machine in polynomial time

If a problem is #P-complete, then it is NP-hard. The converse is
open.
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Further definitions

Pathset: A subset O ⊆ E of edges that makes the graph
operational (i.e. (V ,O) is operational)

For two-terminal reliability, a pathset is just a path between s and t
For all-terminal reliability, a pathset is a spanning tree
For k -terminal reliability, a pathset is a Steiner tree
A minimal pathset is called a minpath

Cutset: A subset C ⊆ E of edges such that (V ,E − C) is not
operational

A minimal cutset is called a mincut
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Reliability polynomial (Moore and Shannon, 1956)

Let m be the number of edges of G = (V ,E). For E ′ ⊆ E , let
G′ = (V ,E ′)

Rel(G,p) =
∑

E ′⊆E ,G′ is a pathset
p|E

′|(1− p)m−|E ′|

Rel(G,p) represents the probability that G is operational, as a function
of p
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N-form of the reliability polynomial

Let m be the number of edges, and Ni be the number of pathsets
with i edges

The probability of obtaining a set of i edges is pi(1− p)m−i

Rel(G,p) =
m∑

i=0

Nipi(1− p)m−i

Rel(G,p) is a polynomial in p of degree at most m, which can be
used to compare different topologies

Rel(G,p) does not define a total ordering among topologies
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Example: Two-terminal reliability of K4 − {e}

v1

v2s

t
a

b c d

f

Pathsets:
{c,ab,df ,ac,bc, cd , cf ,abc,abd ,abf ,acd ,acf ,bcd ,bcf ,adf ,bdf , cdf ,
abcd ,abcf ,abdf ,bcdf ,acdf ,abcdf}
N0 = 0, N1 = 1, N2 = 6, N3 = 10,N4 = 5, N5 = 1

Rel2(G,p) = p(1− p)4 + 6p2(1− p)3 + 10p3(1− p)2 + 5p4(1− p) + p5

= p5 − p4 − 2p3 + 2p2 + p
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Alternative formulations

Using cutsets:

Rel(G,p) = 1−
m∑

i=0

Ci(1− p)ipm−i

Using complements of pathsets:

Rel(G,p) =
m∑

i=0

Fi(1− p)ipm−i

Fi is the number of F-sets with i edges
An F-set is a set of links whose complement is a pathset
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Two graphs with crossing reliability polynomials
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Reliability polynomials of the two previous graphs

32p5(1− p)3 + 24p6(1− p)2 + 8p7(1− p) + p8 =
−15p8 + 56p7 − 72p6 + 32p5

30p5(1− p)3 + 25p6(1− p)2 + 8p7(1− p) + p8 =
−12p8 + 48p7 − 65p6 + 30p5

The two polynomials have a crossing point at p = 2/3
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Difference between both polynomials
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Multiplicity of the root zero

The all-terminal reliability polynomial of G has zero as a root with
multiplicity n − 1

In other words, RelA(G,p) = pn−1f (p), where f (p) is a polynomial
in p
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Some properties of the reliability polynomial

G is a vertex-gluing of G1 and G2 (denoted G1 ·G2) if we can
identify a vertex of G1 with a vertex of G2 in such a way as to
obtain G

If G = G1 ·G2, then Rel(G,p) = Rel(G1,p)Rel(G2,p)

In other words, if G has a cutvertex v , then
Rel(G,p) = Rel(G1,p)Rel(G2,p), where G = G1 ·G2, and
V1 ∩ V2 = {v}

There are no similar results for other graph constructions (e.g.
Cartesian product, lexicographic product, etc.)
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Relationship with other graph parameters

If ke(G1) < ke(G2) then for p close enough to one we have
Rel(G1,p) < Rel(G2,p)

If ke(G1) = ke(G2) = k , and Fk (G1) > Fk (G1), then for p close
enough to one we have Rel(G1,p) < Rel(G2,p)

RelA(G,p) = Nn−1pn−1 + o(pn−1) for p close enough to zero
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Summary of known coefficients

The current picture:

N0, . . . ,Nl−1︸ ︷︷ ︸
Ni=0

, Nl ,

unknown, approx.︷ ︸︸ ︷
Nl+1, . . . ,Nm−c−1, Nm−c , Nm−c+1, . . . ,Nm︸ ︷︷ ︸

Ni=( m
m−i)

Some additional coefficients may be computed efficiently
The complexity is different for the all-terminal and two-terminal cases
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Complexity of computing the exact value of different
coefficients

Quantity All-terminal Two-terminal
l polynomial polynomial
c polynomial polynomial

Ni , i < l polynomial polynomial
Nl polynomial polynomial

Nl+k , with k fixed open polynomial
Nm−c−k , with k fixed polynomial #P-complete

Nm−c polynomial #P-complete
Nm−i , i < c polynomial polynomial∑m

i=0 Ni #P-complete #P-complete
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Summary of known coefficients

An F-set is a set of links whose complement is a pathset

Fi is the number of F-sets with i edges

Rel(G,p) =
m∑

i=0

Fi(1− p)ipm−i

A set of links is either a cutset or an F-set, exclusively, hence
Fi + Ci =

(m
i

)
. Now set d = m − l :

F0, . . . ,Fc−1︸ ︷︷ ︸
Fi=(m

i )

, Fc ,

unknown, approx.︷ ︸︸ ︷
Fc+1, . . . ,Fd−1, Fd , Fd+1, . . . ,Fm︸ ︷︷ ︸

Fi=0
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Parallel reduction

u v

u v

p1

p2
p3

pk

1 − Πk
i=1(1 − pi)
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Series reduction

v1 v2 v3

v1 v3

pa pb

papb
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Degree-2 reduction in all-terminal and k -terminal
reliability

v1 v2 v3

v1 v3

pa pb

papb
1−(1−pa)(1−pb)

Relk(G, p) = (1− (1− pa)(1− pb))Relk(H, p)
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The factoring theorem (deletion-contraction)

Rel(G,p) =



1 if G is a singleton
0 if G disconnected
Rel(G − e,p) if e is a loop
pRel(G/e,p) if e is a cut-edge
(1− p)Rel(G − e,p) + pRel(G/e,p) otherwise
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All-terminal reliability polynomial of K4 − {e} by
deletion-contraction

1 1 1 1 1 1 1 1

1111

1

pppp

p2
p2

p(2− p)

p2
p

p

p2(2− p)

p3

p2(3− 2p) p(2− p)

p3(4− 3p) p2(2− p)2

p3(4p2 − 11p+ 8)
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Number of spanning trees by deletion-contraction
(Bjorklund et al.)

τ(G) =


1 if G has no edges
τ(G − e) if e is a loop
τ(G/e) if e is a cut-edge
τ(G − e) + τ(G/e) otherwise
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Spanning trees of K4 − {e} by deletion-contraction

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1
1

1

1

1 1

2

2 2

31

4 4

8
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Number of acyclic orientations by deletion-contraction
(Bjorklund et al.)

κ(G) =


1 if G has no edges
0 if e is a loop
2κ(G/e) if e is a cut-edge
κ(G − e) + κ(G/e) otherwise
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Acyclic orientations of K4 − {e} by deletion-contraction

1 1 1 1

0

0

0

2 2 2 2

4

4

2
4

8
6

4

14 4

18
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Chromatic polynomial by deletion-contraction

Denote by PG(t) the number of proper colorings of G with t colors. Let
n = n(G) be the number of vertices of G.

PG(t) =


tn if G has no edges
0 if e is a loop
(t − 1)PG/e(t) if e is a cut-edge
PG−e(t) + PG/e(t) otherwise
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The Tutte polynomial

Notations:
n = n(G) is the number of vertices of G
m = m(G) is the number of edges of G
c = c(G) is the number of connected components of G
For F ⊆ E , cF = cF (G) denotes the number of connected
components in the subgraph (V ,F )

The Tutte polynomial of G:

TG(x , y) =
∑
F⊆E

(x − 1)cF−c(y − 1)cF+|F |−n

H. Pérez-Rosés (Lleida, Spain) Network reliability GraphMasters Lleida 2018 32 / 62



The Tutte polynomial

Notations:
n = n(G) is the number of vertices of G
m = m(G) is the number of edges of G
c = c(G) is the number of connected components of G
For F ⊆ E , cF = cF (G) denotes the number of connected
components in the subgraph (V ,F )

The Tutte polynomial of G:

TG(x , y) =
∑
F⊆E

(x − 1)cF−c(y − 1)cF+|F |−n

H. Pérez-Rosés (Lleida, Spain) Network reliability GraphMasters Lleida 2018 32 / 62



The Tutte polynomial

Notations:
n = n(G) is the number of vertices of G
m = m(G) is the number of edges of G
c = c(G) is the number of connected components of G
For F ⊆ E , cF = cF (G) denotes the number of connected
components in the subgraph (V ,F )

The Tutte polynomial of G:

TG(x , y) =
∑
F⊆E

(x − 1)cF−c(y − 1)cF+|F |−n

H. Pérez-Rosés (Lleida, Spain) Network reliability GraphMasters Lleida 2018 32 / 62



The Tutte polynomial

Notations:
n = n(G) is the number of vertices of G
m = m(G) is the number of edges of G
c = c(G) is the number of connected components of G
For F ⊆ E , cF = cF (G) denotes the number of connected
components in the subgraph (V ,F )

The Tutte polynomial of G:

TG(x , y) =
∑
F⊆E

(x − 1)cF−c(y − 1)cF+|F |−n

H. Pérez-Rosés (Lleida, Spain) Network reliability GraphMasters Lleida 2018 32 / 62



The Tutte polynomial

Notations:
n = n(G) is the number of vertices of G
m = m(G) is the number of edges of G
c = c(G) is the number of connected components of G
For F ⊆ E , cF = cF (G) denotes the number of connected
components in the subgraph (V ,F )

The Tutte polynomial of G:

TG(x , y) =
∑
F⊆E

(x − 1)cF−c(y − 1)cF+|F |−n

H. Pérez-Rosés (Lleida, Spain) Network reliability GraphMasters Lleida 2018 32 / 62



The Tutte polynomial

Notations:
n = n(G) is the number of vertices of G
m = m(G) is the number of edges of G
c = c(G) is the number of connected components of G
For F ⊆ E , cF = cF (G) denotes the number of connected
components in the subgraph (V ,F )

The Tutte polynomial of G:

TG(x , y) =
∑
F⊆E

(x − 1)cF−c(y − 1)cF+|F |−n

H. Pérez-Rosés (Lleida, Spain) Network reliability GraphMasters Lleida 2018 32 / 62



The Tutte polynomial by deletion-contraction

TG(x , y) =


1 if G has no edges
yTG−e(x , y) if e is a loop
xTG/e(x , y) if e is a cut-edge
TG−e(x , y) + TG/e(x , y) otherwise
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Tutte polynomial of K4 − {e} by deletion-contraction

1 1 1 1 1 1 1 1

y y y yx x x x

x2

x2
x + y

x2 xy
xy

y2

x3 x2 + x+ y x2 + xy
y2 + xy

x3 + x2 + x+ y x2 + 2xy + y2

x3 + 2x2 + 2xy + y2 + x+ y
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Relationship between the reliability polynomial and the
Tutte polynomial

The reliability polynomial can be expressed as a specialization of the
Tutte polynomial:

Rel(G,p) = pn−1(1− p)m−n+1TG(1,
1

1− p
)
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The recipe theorem

Let f be a function from graphs to the multivariate polynomial ring
Z[α, β, γ, λ, µ], such that for all e ∈ E ,

f (G) =


αn if G has no edges
βf (G − e) if e is a loop
γf (G/e) if e is a cut-edge
λ(G − e) + µf (G/e) otherwise

Then
f (G) = αcλc+m−nµn−cTG(

γ

µ
,
β

λ
)

The function f is called a Tutte-Grothendieck invariant (Welsh, 1993)
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Complete graphs

Let An = RelA(Kn) and q = 1− p

An can be computed in polynomial time with the aid of the
following recursive formula

An = 1−
n−1∑
j=1

(
n − 1
j − 1

)
Ajqj(n−j)

Let Tn = Rel2(Kn). Tn can be computed in polynomial time with
the aid of the formula

Tn = 1−
n−1∑
j=1

(
n − 2
j − 1

)
Ajqj(n−j)
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Planar graphs

Two-terminal reliability is #P-complete for planar graphs

k -terminal reliability is NP-hard for planar graphs

The complexity of all-terminal reliability on planar graphs is open
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Series-parallel graphs

A graph is series-parallel if it does not contain any subgraph
homeomorphic to K4

Equivalently: If we apply series and parallel reductions to a
series-parallel graph, we end up with a tree

Series-parallel graphs form a subclass of planar graphs

All reliability problems can be solved in linear time when restricted
to series-parallel graphs
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Hypercubes

The hypercube of dimension k , or k -cube, denoted Hk , is defined
as follows: The vertices are the binary strings of length k , and two
vertices are joined by an edge if, and only if, they differ in only one
bit (their Hamming distance is one)

It is very popular as an architecture for supercomputers

Two drawings of the hypercube of dimension 3:

000

001

010

100

110

101

111
011
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Reliability polynomial of the hypercube

The exact reliability polynomial of Hk is not known

There are lower and upper bounds for the reliability polynomial of
Hk , obtained with the aid of the Kruskal-Katona theorem (Bulka
and Dugan, 1990), and simulation (Soh and Rai, 1994)
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Cube-free graphs

A graph is cube-free if it is planar and has no subgraphs
homeomorphic to the 3-cube H3

All-terminal reliability can be solved in polynomial time for
cube-free graphs (Politof and Satyanarayana, 1984)

The algorithm uses four types of reductions:
series reductions
parallel reductions
∆→ Y reductions
trisubgraph → Y reductions
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∆→ Y reduction
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Design problem: Uniformly optimal graphs

Uniformly optimal graph: has the highest reliability for each
0 ≤ p ≤ 1

Uniformly optimal graphs do not always exist. For example, if
m = n(n−1)

2 − n+2
2 for n > 6 even.

However, they do exist for some cases. For example, if
m ≤ n(n−1)

2 − bn
2c, the complete graph minus a matching is

uniformly optimal.
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Necessary conditions

When p is close to zero

RelA(G,p) ∼ Nn−1pn−1(1− p)m−n+1

When p is close to one

RelA(G,p) ∼ 1− Ccpm−c(1− p)c

If G is uniformly optimal, then
G has the highest number of spanning trees among all simple
graphs with n nodes and m edges, and

G has the highest possible edge connectivity λ among all simple
graphs with n nodes and m edges (namely λ = b2m

n c), and the
minimum number of cutsets of size λ among all such max-λ
graphs
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Reliability problems in directed graphs

s, t-connectedness:
Given two distinguished vertices, s and t (source and target), and
given the probability p of an arc being operational, what is the
probability that there exists an operational path from s to t?

s,T -connectedness:
Given the probability p of an arc being operational, a source node
s, and a set T of target nodes, what is the probability that there
exists an operational path from s to any target node t ∈ T ?

Reachability:
Given the probability p of an arc being operational, and a source
node s, what is the probability that there exists an operational path
from s to any other node v?

Strongly connected reliability:
Given the probability p of an arc being operational, what is the
probability that the digraph G remains strongly connected?
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Complexity of reliability problems in digraphs

s, t-connectedness, s,T -connectedness, and reachability are
#P-complete

s, t-connectedness and s,T -connectedness are #P-complete for
acyclic digraphs

Reachability can be solved in polynomial time for acyclic digraphs
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Some design results on digraph reliability

If we allow multiple arcs, then for every n ≥ 2 and every m ≥ n
there exists a uniformly optimal (m,n)-digraph (without loops)

For all positive n and k , with m = n + k ≤ n(n + 1), and 0 ≤ k ≤ 3,
there exists a uniformly optimal simple (m,n)-digraph

There is no uniformly optimal simple digraph with n = 4 and m = 8
(Brown and Li, 2007)
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Reliability polynomial for nodes

Links are perfectly reliable, and nodes fail independently with
probability 1− p (i.e. they operate with probability p)

Let Si denote the number of connected induced subgraphs
containing exactly i nodes

Rel(G,p) =
m∑

i=0

Sipi(1− p)m−i

An i-cutset is a set of i nodes whose removal disconects G

If Ci denotes the number of i-cutsets, then Si + Cn−i =
(n

i

)
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Some uniformly optimal graphs

The k -partite graphs K (b,b, . . . ,b,b + 1, . . . ,b + 1) are uniformly
optimal in the class of all graphs with n = bh + (b + 1)(k − h) and
m = h +2bh +h2−k−2bk−b2k−2hk−2bhk +k2 +2bk2 +b2k2,
where k is the total number of partite sets, h is the number of
partite sets of size b, and b ≥ 2, k ≥ 1 (attributed to Bermond).

The complete bipartite graph K (b,b + 2) is uniformly optimal in
the class of graphs with n = 2b + 2 and m = b2 + 2b, for b ≥ 1
(Goldschmidt et al., 1994).
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Some uniformly optimal graphs (continued)

The (k + 2)-partite graphs K (b,b + 1, . . . ,b + 1,b + 2) are
uniformly optimal in the class of all graphs with n = (k + 2)(b + 1)
and m = (k2 + 3k + 2)(b + 1)2/2− 1, where k is the number of
partite sets of size b + 1, and b ≥ 2, k ≥ 1 (Yu, Shao, and Meng,
2010).

The complete tripartite graph K (b,b + 1,b + 2) is uniformly
optimal in the class of graphs with n = 3b + 3 and
m = 3b2 + 6b + 2, for b > 1 (Liu, Cheng, and Liu, 2000).
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Negative results

The class of graphs with
m = rn + k , 2 ≤ r ≤ n/5− 4, 0 ≤ k < n/2 does not contain a
uniformly optimal graph (Goldschmidt et al., 1994).

The (k + 2)-partite graphs K (b,b + 1, . . . ,b + 1,b + i) are not
uniformly optimal in their classes for i > 2 (Yu, Shao, and Meng,
2010).

The complete tripartite graph K (b,b + 1,b + 2) is not uniformly
optimal in the class of graphs with n = 3b + 3 and
m = 3b2 + 6b + 2, for b > 1 (Liu, Cheng, and Liu, 2000).

Conjecture: If we allow multiple edges, then there exists a
uniformly optimal graph for every class (Boesch, Li, and Suffel,
1991).
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Diameter-constrained reliability

RelD(G,p) represents the probability that the nodes of interest will
remain connected by a path of length D or less (Petingi and
Rodriguez, 2001).

Again, there are three cases: two-terminal, all-terminal, and
k -terminal

In the two-terminal case, a pathset is an s, t-path of length ≤ D

In the all-terminal case, a pathset is a spanning tree of diameter
≤ D

In the k -terminal case, a pathset is a Steiner tree of diameter ≤ D
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Complexity of diameter-constrained reliability

Two-terminal DCR can be solved in polynomial time for D = 2,
and is #P-hard for D > 2

All-terminal and k -terminal DCR are #P-hard for all D ≥ 2
(Canale et al., 2015)
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Problems I

Compute (or approximate) the reliability polynomial of the
Cube-Connected-Cycles (below)
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Problems II

Compute (or approximate) the reliability polynomial of the butterfly
(below)
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Problems III

Compute (or approximate) the reliability polynomial of other
classes of graphs

Compute (or approximate) the strongly connected reliability for
important classes of digraphs

Generalize the reliability polynomial to mixed graphs

Compute (or approximate) the diameter-constrained reliability of
some popular architectures

Find optimal networks with respect to average reliability
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