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The Isogeny problem
what even is an isogeny?
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✦ In crypto, we use elliptic 

curves over a finite field 

✦ Elliptic curves are groups: 

you can add points together!

✦ Isogenies are group homomorphisms✦ Degree = size of kernel

𝜑 : E1 → E2
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The Isogeny problem 

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny… 
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The Isogeny problem 

Given E1 and E2 find an isogeny 𝜑 : E1 → E2

• The solution 𝜑 is an isogeny… 

• How to represent an isogeny? 

‣ any efficient representation: an encoding which allows one to 
evaluate 𝜑(P) in polynomial time for any P

solution typically has degree ≈ 2256
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Isogeny graph

E1 E2

an isogeny of degree 2 = an edge in a graph
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• The 2-isogeny graph (supersingular…)

• 3-regular, connected (for supersingular curves)

• Paths = isogenies of degree 2n 
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Uniformly distributed

Theorem (Pizer, 1990) 

It is a Ramanujan graph with  
 ≈ p/12 vertices. In particular, 
random walks mix rapidly.







The𝓵2-IsogenyPath problem 

Given E1 and E2 (supersingular) find  
an𝓵2-isogeny path from E1 to E2



The𝓵2-IsogenyPath problem 

Given E1 and E2 (supersingular) find  
an𝓵2-isogeny path from E1 to E2

Random walks ⇒ worst-case to average-case self-reduction



Interpolation
Representing arbitrary 

isogenies
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HD representation of isogenies
Attacks against SIDH [Eurocrypt 2023: Castryck & Decru, MMPPW, Robert]:
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Interpolation: Knowing 𝜑 on a few points ⇒ Knowing 𝜑 everywhere

a subgroup of E1 
of order 22n

Attacks against SIDH [CD23, MMPPW23, Rob23]: 

• Let 𝜑 : E1 → E2 of degree d 

• Let (P, Q) is a basis of E1[2n], with 22n > 4·deg(𝜑) 

• Given (d, P, Q, 𝜑(P), 𝜑(Q)), one can compute 𝜑(R) for any R ∈ E1 in poly. time 

Corollary: (d, P, Q, 𝜑(P), 𝜑(Q)) is an efficient representation of 𝜑, the "interpolation 
representation", or "HD representation » 

Cost? evaluating an isogeny of degree 22n in dimension 2, 4 or 8

Very costly, but 
always works

Somewhat fast, but requires 22n – d = a2 + b2

Fastest, but requires 
22n – d = a2



The Isogeny problem 

Given E1 and E2 supersingular, find an 
isogeny 𝜑 : E1 → E2 in interpolation 

representation
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2-IsogenyPathIsogeny
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2-IsogenyPathIsogeny
trivial

GRH 

/ [W. – FOCS 2021] + [Page, W. – Eurocrypt 2024]
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[Eisenträger, Hallgren, Lauter, 
Morrison, Petit – Eurocrypt 2018]



Endomorphisms
and computational 

problems
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An endomorphism of E is an isogeny 𝜑 : E → E (or the zero map [0])

The endomorphism ring of E is End(E) = {𝜑 : E → E}

• 𝜑 + 𝜓 is pointwise addition: (𝜑 + 𝜓)(P) = 𝜑(P) + 𝜓(P) 

• 𝜑𝜓 is the composition: (𝜑𝜓)(P) = 𝜑(𝜓(P))

Multiplication by m ∈ ℤ is an endomorphism

[m] : E → E : P ⟼ P + … + P  

It forms a subring ℤ ⊂ End(E)

21



Endomorphism ring

What is the structure of End(E)?

• It contains ℤ ⊂ End(E)…

22



Endomorphism ring

What is the structure of End(E)?

• It contains ℤ ⊂ End(E)…

• (End(E), +) is a lattice of dimension 2 or 4 

22



Endomorphism ring

What is the structure of End(E)?

• It contains ℤ ⊂ End(E)…

• (End(E), +) is a lattice of dimension 2 or 4 

22



Endomorphism ring

What is the structure of End(E)?

• It contains ℤ ⊂ End(E)…

• (End(E), +) is a lattice of dimension 2 or 4 

0 1 2 3 4–1–2–3 5 6 7-4-5 ℤ
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What is the structure of End(E)? 

• It contains ℤ ⊂ End(E)… 

• (End(E), +) is a lattice of dimension 2 or 4 
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SupersingularOrdinary



The endomorphism ring problem

For E supersingular End(E ) = {𝜑 : E → E} is a lattice of dimension 4 

The EndRing problem 

Given E (supersingular) find 4 generators  
of the endomorphism ring End(E)

24
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The quaternion algebra Bp,∞ is the ring (for p ≡ 3 (mod 4))

Bp,∞ = ℚ ⊕ ℚ i ⊕ ℚ j ⊕ ℚ k

where i 2 = –1, j 2 = –p, and k = ij = –ji 
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Quaternion algebra

The quaternion algebra Bp,∞ is the ring (for p ≡ 3 (mod 4))

Bp,∞ = ℚ ⊕ ℚ i ⊕ ℚ j ⊕ ℚ k

where i 2 = –1, j 2 = –p, and k = ij = –ji 

End(E ) is (isomorphic to) a discrete subrings of Bp,∞ 

‣ End(E ) is a maximal order in Bp,∞ 

‣ There are many maximal orders in Bp,∞ 
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Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and 

Consider E0 : y2 = x3 + x 

Two non-scalar endomorphisms: 

• 𝜄 : E0 → E0 : (x, y) ⟼ (–x, 𝛼y) 
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One Endomorphism
• We always have ℤ ⊂ End(E), that part is easy 

• Finding any non-scalar endomorphism? 
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One Endomorphism
• We always have ℤ ⊂ End(E), that part is easy 

• Finding any non-scalar endomorphism? 

The OneEnd problem 

Given E (supersingular) find one 
endomorphism 𝛼 ∈ End(E) \ ℤ
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Which is hardest? Easiest?

EndRing 2-IsogenyPath

OneEnd Isogeny

GRH  
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OneEnd reduces to Isogeny

Suppose we can solve Isogeny. 
Can solve OneEnd?

How to find endomorphisms of E:
‣ If 𝛗 is long enough 𝛙 ∘ 𝛗 ∉ ℤ

E
F

1) Random 
walk

2) Solve Isogeny
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𝛗
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[Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018] Supersingular isogeny graphs and 
endomorphism rings: Reductions and solutions. 

[W. – FOCS 2021] The supersingular isogeny path and endomorphism ring problems are equivalent. 
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EndRing ⇔  Isogeny

End(–) is a GPS that allows you to find your way between supersingular curves: 

• given End(E1) and End(E2), one can find an isogeny E1 → E2 in poly. time 

You can update the GPS coordinates as you travel through isogenies: 

• given End(E1), and a (smooth) isogeny E1 → E2, one can find End(E2) in poly. time 

For E1, E2 supersingular, Hom(E1, E2) is a lattice of rank 4

Computing End(–)  ⇔  Computing Hom(–, –)

a basis of Hom(E1, E2) 
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Key generation
Generating a curve with 
its endomorphism ring

Picture by Beppe Rijs



Keys

• Public key: a supersingular curve Epk 

• Secret key: a basis of End(Epk)
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Keys

• Public key: a supersingular curve Epk 

• Secret key: a basis of End(Epk)

How to generate a random Epk together with End(Epk)?

How to generate even a single supersingular curve?
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A special supersingular curve

Example: p ≡ 3 (mod 4), so 𝔽p2 = 𝔽p(𝛼) where 𝛼2 = –1, and 

Consider E0 : y2 = x3 + x 

Two non-trivial endomorphisms: 

• 𝜄 : E0 → E0 : (x, y) ⟼ (–x, 𝛼y) 

• 𝜋 : E0 → E0 : (x, y) ⟼ (xp, yp)

End(E0) = ℤ ⊕ ℤ𝜄 ⊕ ℤ             ⊕ ℤ𝜄 + 𝜋
2

1 + 𝜄𝜋
2

𝜄2 = [–1]
𝜄𝜋 = –𝜋𝜄
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End(E0) = ℤ ⊕ ℤ𝜄 ⊕ ℤ             ⊕ ℤ𝜄 + 𝜋
2

1 + 𝜄𝜋
2

E0 and End(E0) is our reference

𝜄2 = [–1]
𝜄𝜋 = –𝜋𝜄
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E0
Start from E0

Generating a random curve
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E0
Start from E0

Generating a random curve

40

End(E0)

Walk randomly

End(E)

Use knowledge of the 
path and of End(E0) to 

compute End(E)

E



One can generate (E, End(E)) with E uniform
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