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The Isogeny problem

what even is an isogeny?




Elliptic curves

equations of the form
y2=x34 ax+ b

y? = x3 — 4x
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The Isogeny problem

Given E, and E, find an isogeny ¢ : E, — E,
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The Isogeny problem

Given E, and E, find an isogeny ¢ : E, — E,

The solution o is an isogeny.. solution routinely
* How to represent an isogeny? 7 degree - 2
’ ' 2
X X fine for smal degree..

* Build "big" isogenies as formal combinations of "small" ones
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The Isogeny problem

Given E, and E, find an isogeny ¢ : E, — E,

* The solution ¢ is an isogeny...
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The Isogeny problem

Given E, and E, find an isogeny ¢ : E, — E,

* The solution ¢ is an isogeny... solution

typicall
* How to represent an isogeny? as degree = 2256
(x, y) +— (X2 +1 y(x2-— 1)) (deg'ee 2)

* Build "big" isogenies as formal combinations of "small" ones

> o o 1) represented by (‘comp’, ¢, ) where ¢ and @ are composable
» o + 1) represented by (‘add’, ¢, 1) where ¢ and 1 are both E1 — E>
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The Isogeny problem

Given E, and E, find an isogeny ¢ : E, — E,

* The solution ¢ is an isogeny... S0/ution "Ypicall

* How to represent an isogeny? as degree = 2256

> any efficient representation: an encoding which allows one to
evaluate ¢(P) in polynomial time for any P



Isogeny graph

> k3

an isogeny of degree 2 = an edge in a graph

10



Isogeny graph

® The 2-isogeny graph (supersingular...)

Er — E2
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® 3-regular, connected (for supersingular curves)
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Isogeny graph

® The 2-isogeny graph (supersingular...)

® 3-regular, connected (for supersingular curves)

® Paths = isogenies of degree 2n

1
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Interpolation

Representing arbitrary
Isogenies




HD representation of isogenies

Attacks against SIDH [Eurocrypt 2023: Castryck & Decru, MMPPW, Robert]:
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HD representation of isogenies

Attacks against SIDH [Eurocrypt 2023: Castryck & Decru, MMPPW, Robert]:
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HD representation of isogenies

Attacks against SIDH [Eurocrypt 2023: Castryck & Decru, MMPPW, Robert]:

. B a subgroup of E;
Let ¢ : E1 — E2 of degree d , " oforder 22n

e Let (P, Q) is a basis of E1[27], with 220 > 4 - deg(yp)
* Given (d, P, Q, ¢(P), (Q)), one can compute ¢(R) for any R € E1 in poly. time

Interpolation: Knowing ¢ on a few points = Knowing ¢ everywhere

Corollary: (d, P, Q, o(P), »(Q)) is an efficient representation of ¢, the "interpolation
representation’, or "HD representation »

Cost? evaluating an isogeny of degree 22" in dimension 2, 4 or 8
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HD representation of isogenies

Fastest, but requires

2% = d = 32 \
\

Cost? evaluating an isogeny of degree 22" in dimension 2, 4 or 8
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HD representation of isogenies

Very costly, but

a
Fastest, but requires / Iways works
22 - g = 32

Cost? evaluating an isogeny of degree 22" in dimension 2, 4 or 8
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The Isogeny problem

Given E, and E, supersingular, find an

isogeny ¢ : £, — E, in interpolation

representation
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GRI-I

[Eisentrager, Hallgren, Lauter,

Morrison, Petit - Eurocrypt 2018) / [W. - FOCS 2021] + [Page, W. - Eurocrypt 2024]
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Endomorphisms

and computational
problems




Endomorphism ring

An endomorphism of E is an isogeny ¢ : E — E (or the zero map [O])
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Endomorphism ring

An endomorphism of E is an isogeny ¢ : E — E (or the zero map [O])
The endomorphismring of E is End(E) ={¢ : E — E}

* ¢ +1is pointwise addition: (¢ + ¥)(P) = o(P) + (P)

* ¢1) is the composition: (py)(P) = o((P))

Multiplication by m € Z is an endomorphism
Im|:E—-E:P—P+..+P
It forms a subring Z ¢ End(E)

21



Endomorphism ring

What is the structure of End(E)?
* |t contains Z c End(E)...
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* (End(E), +) is a lattice of dimension 2 or 4
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What is the structure of End(E)?
* |t contains Z c End(E)...

* (End(E), +) is a lattice of dimension 2 or 4
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Endomorphism ring

What is the structure of End(E)?
* |t contains Z c End(E)...

* (End(E), +) is a lattice of dimension 2 or 4
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What is the structure of End(E)?
* |t contains Z c End(E)...

* (End(E), +) is a lattice of dimension 2 or 4
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Endomorphism ring

What is the structure of End(E)?
* |t contains Z c End(E)...

* (End(E), +) is a lattice of dimension 2 or 4
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The endomorphism ring problem

For E supersingular End(E) ={¢ : E — E} is a lattice of dimension 4

The EndRing problem

Given E (supersingular) find 4 generators
of the endomorphism ring End(E)

24



Example

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx

25



Example

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx

Two non-scalar endomorphisms:

25



Example

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-scalar endomorphisms:

* 1:Fo— Eo: (X, ¥) — (=X, ay)

25



Example

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-scalar endomorphisms:

* 1:Eo— Eo: (X, y)— (%, ay) 2 =[-1]

25



Example

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-scalar endomorphismes:
* 1:Eo— Eo: (X, ¥)— (-X, ay) 2 =[-1]

* 7:E0— Eo: (X, y)— (xP, yP)

25



Example

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-scalar endomorphismes:
* 1:Eo— Eo: (X, ¥)— (-X, ay) 2 =[-1]

e 7:E0— Eo: (X, y) — (xr, yr) (7T = =771

25



Example

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-scalar endomorphismes:
* 1:Eo— Eo: (X, ¥)— (-X, ay) 2 =[-1]

e 7:E0— Eo: (X, y) — (xr, yr) (7T = =771

25



Example

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-scalar endomorphismes:
* 1:Eo— Eo: (X, ¥)— (-X, ay) 2 =[-1]

e 7:Eo— Eo: (X, y)— (xr, yr) 7T & =771
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Example

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-scalar endomorphismes:
* 1:Eo— Eo: (X, ¥)— (-X, ay) 2 =[-1]

e 7:E0— Eo: (X, y) — (xr, yr) (7T = =771

End(Eo)=7 07107 ‘+2” o7 11T
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Example

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-scalar endomorphismes:
* 1:Eo— Eo: (X, ¥)— (-X, ay) 2 =[-1]

* 7:Eo0— Eo: (X, y)— (xP, yP) L7T = =711

End(Eo)=7 0 Zio7 “17 o7 11T
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Quaternion algebra

The quaternion algebra B, is the ring (for p = 3 (mod 4))
Bro=QoQi®oQj®QKk

where [2=-1, j2=-p, and kK =ij = —ji
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Quaternion algebra

The quaternion algebra B, is the ring (for p = 3 (mod 4))
Bro=QoQi®oQj®QKk

where [2=-1, j2=-p, and kK =ij = —ji

End(E) is (isomorphic to) a discrete subrings of Bp,«
> End(E) is a maximal order in By«

> There are many maximal orders in Bp,«



Example

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-scalar endomorphismes:
* 1:Eo— Eo: (X, ¥)— (-X, ay) 2 =[-1]

e 7:Eo— Eo: (X, y)— (xr, yr) 7T & =771

End(Eo)=7 @ Z1® 7 ‘+2” o7 - +2”T EndRing
T oTie7 ’;f o7 ] +2’7 c Bo. MaxOrder
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One Endomorphism

e We always have Z c End(E), that part is easy

* Finding any non-scalar endomorphism?
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One Endomorphism

e We always have Z c End(E), that part is easy

* Finding any non-scalar endomorphism?

The OneEnd problem

Given E (supersingular) find one

endomorphism a € End(E) \ Z

29
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OneEnd reduces to Isogeny

Suppose we can solve Isogeny.
Can solve OneEnd?
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OneEnd reduces to Isogeny

2) Solve lsogeny

Suppose we can solve Isogeny.
Can solve OneEnd?

How to find endomorphisms of E:
> If ¢ is long enough Yo ¢ 7

%) Profit
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Which is hardest? Easiest?

EndRing 2-lsogenyPath
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|
r

|
/
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Etnd —— lsogeny

[Page, W. - Eurocrypt 2024]

Earlier heuristic reductions: [Eisentrager, Hallgren, Lauter, Morrison, Petit - Eurocrypt 2018]
Recent unconditional reductions: [Herlédan Le Merdy, W. - IACR eprint 2025]
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Which is hardest? Easiest?

[W. - FOCS 2021]

GRH

Z—IsogenyPath

N |

EndRing <
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trivial

| 6RH

[Page, W. - Eurocrypt 2024]
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[Page, W. - Eurocrypt 2024]

Earlier heuristic reductions: [Eisentrager, Hallgren, Lauter, Morrison, Petit - Eurocrypt 2018]
Recent unconditional reductions: [Herlédan Le Merdy, W. - IACR eprint 2025]
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Isogeny World Quaternion World

Deuring correspondence

Maximal orders @ in Bp,«
O = End(E)
(up to isomorphism)

Supersingular curves E over [Fp2
(up to isomorphism)

(9,0)-ideals I,
O = End(E) and O’ = End(E’)

HARD EndRing/MaxOrder £AQY
: Connecting ideal:

Isogeny: S~
GivenEand . KLPT. Clapoti..  Given O and ©’, find

findp:E P an (0,0’)-ideal |

lsogenies g : E — E’
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EndRing & Isogeny

[Eisentriager, Hallgren, Lauter, Morrison, Petit - Eurocrypt 2018] Supersingular isogeny graphs and
endomorphism rings: Reductions and solutions.

[W. - FOCS 2021] The supersingular isogeny path and endomorphism ring problems are equivalent.
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For E,, E2 supersingular, Hom(Es, E2) is a lattice of rank 4
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EndRing & Isogeny

End(-) is a GPS that allows you to find your way between supersingular curves:

* given End(E1) and End(E>), one can find an-isegeny-E+—Ex-in-pely-time

You can update the GPS coordinates as you travel through isogenies:

* given End(E1), and a (smooth) isogeny E1 — E»2, one can find End(E2) in poly. time

For E,, E2 supersingular, Hom(Es, E2) is a lattice of rank 4

Computing End(-) & Computing H
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Key generation

Generating a curve with
its endomorphism ring




Keys

* Public key: a supersingular curve Epk

e Secret key: a basis of End(Epk)
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How to generate a random Epk together with End(Epk)?

38



Keys

* Public key: a supersingular curve Epk

e Secret key: a basis of End(Epk)

How to generate a random Epk together with End(Epk)?

How to generate even a single supersingular curve?

38



A special supersingular curve

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-trivial endomorphisms:
* 1:Eo— Eo: (X, y) — (X, ay) 2 =[-1]

e 7:Eo— Eo: (X, y)— (xr, yr) 7T & =771

End(Eo)=7 0 Zio7 17 o7 1T

2 2
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A special supersingular curve

Example: p = 3 (mod 4), so Fp2 = Fp(a) where a2 = -1, and

ConsiderEo: y2=x3+Xx
Two non-trivial endomorphisms:
* 1:Eo— Eo: (X, ¥)— (-X, ay) 2 =[-1]

e 7:Eo— Eo: (X, y)— (xr, yr) 7T & =771

End(Eo)=2 02107 ;" o “2‘”

Eo and End(Eo) is our refer

9



® Generating arandom curve

@ o Start from E,

40






Start from E,
Walk randomly
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® Generating arandom curve

Start from E,
Walk randomly

Use knowledge of the

path and of End(E) to
compute End(E)

AN




One can generate (E, End(F)) with E uniform



