

An introduction to Isogeny-based cryptography

with a view towards understanding SQIsign

April 2025, The SQIparty — a Workshop on Isogeny-Crypto, Lleida, Spain

Benjamin Wesolowski, CNRS and ENS de Lyon

The Isogeny problem what even is an isogeny?

Picture by Beppe Rijs

 $y^2 = x^3 + x$

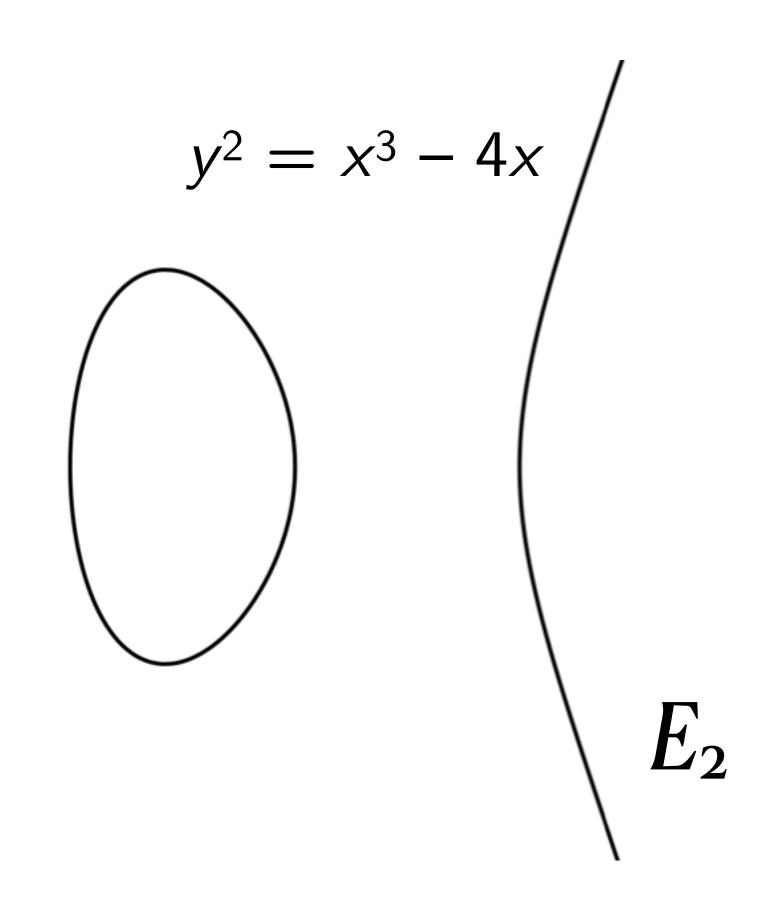
 E_1

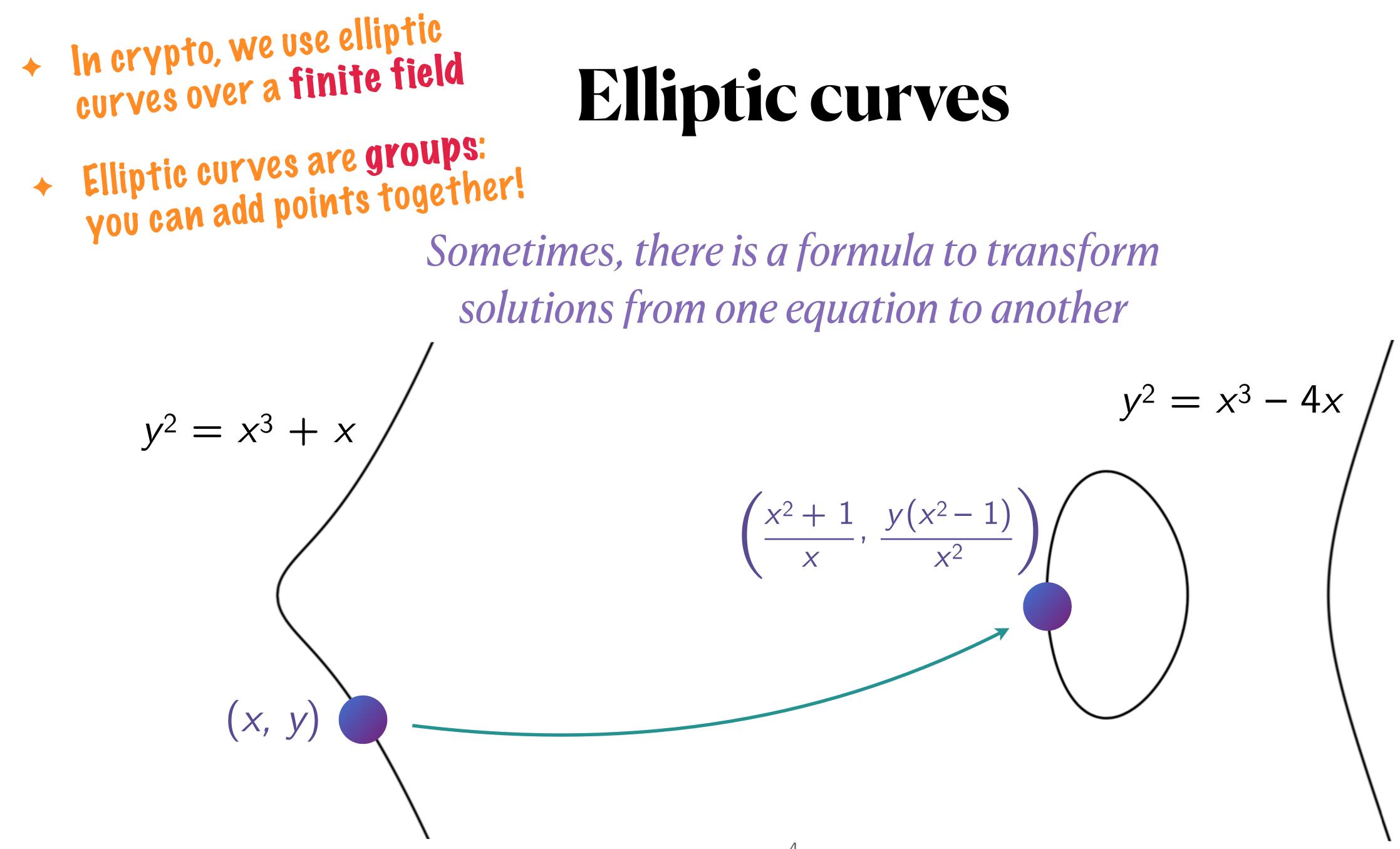
- Elliptic curves are groups:
 you can add points together!

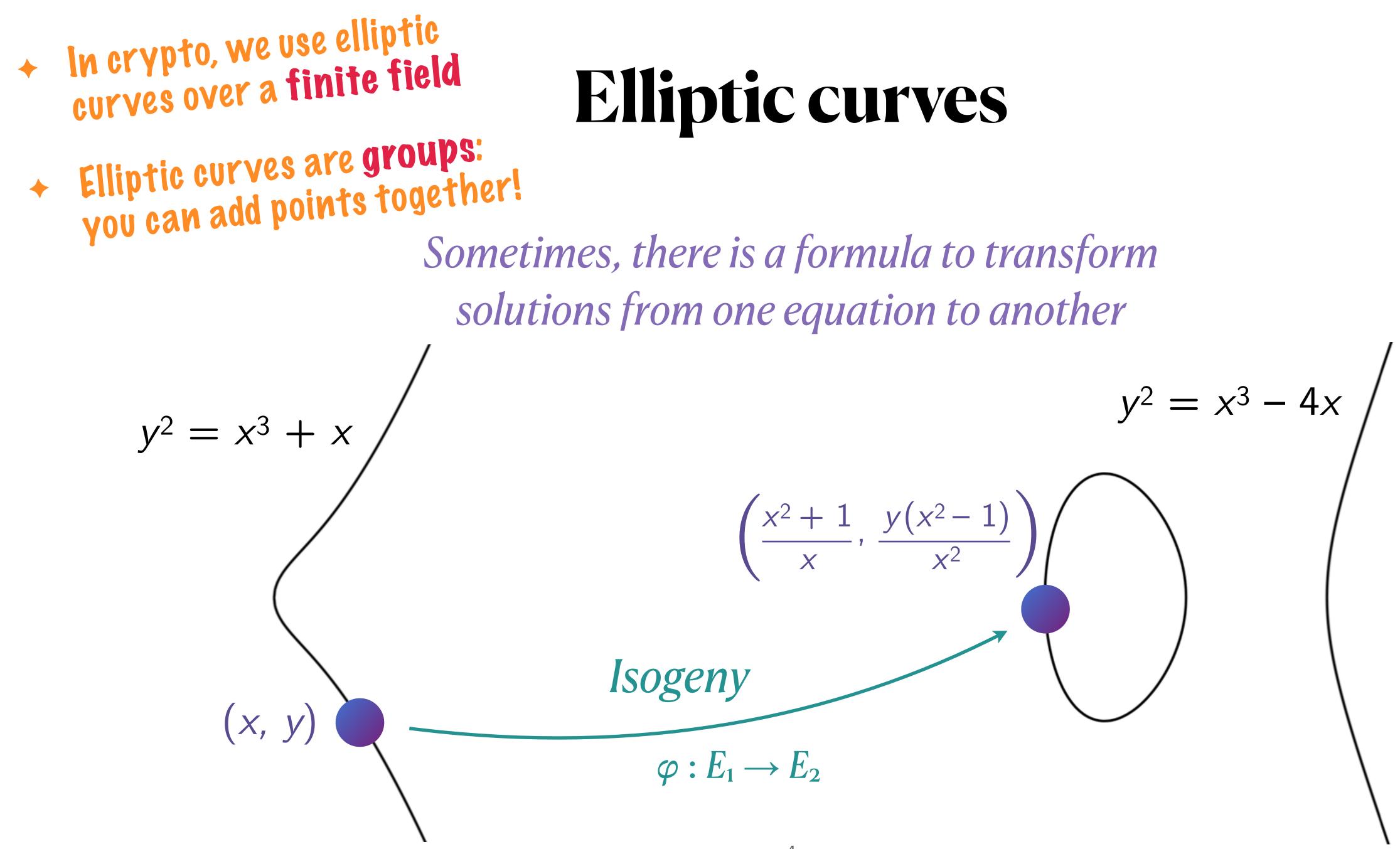
Elliptic curves

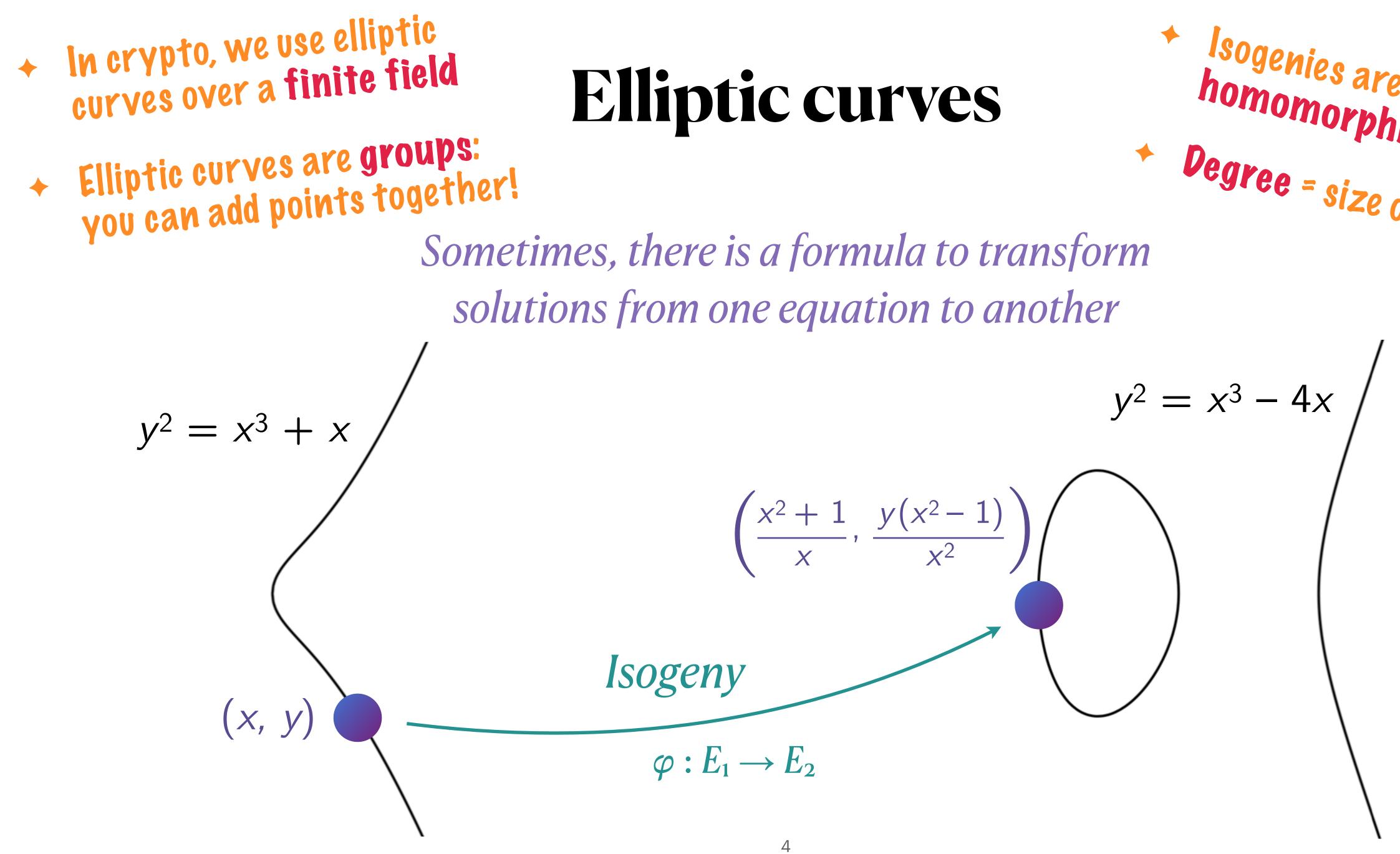
equations of the form

 $y^2 = x^3 + ax + b$

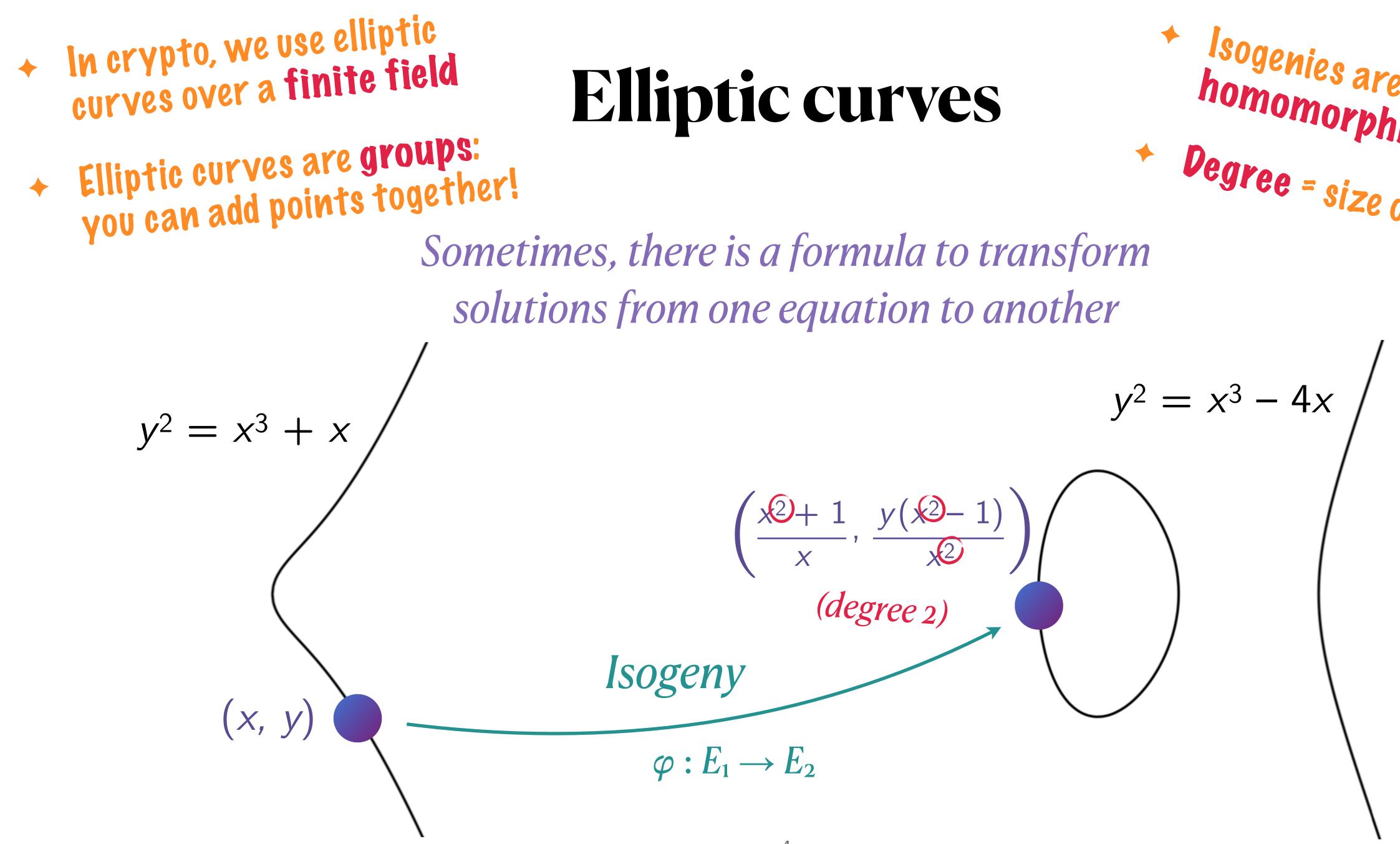




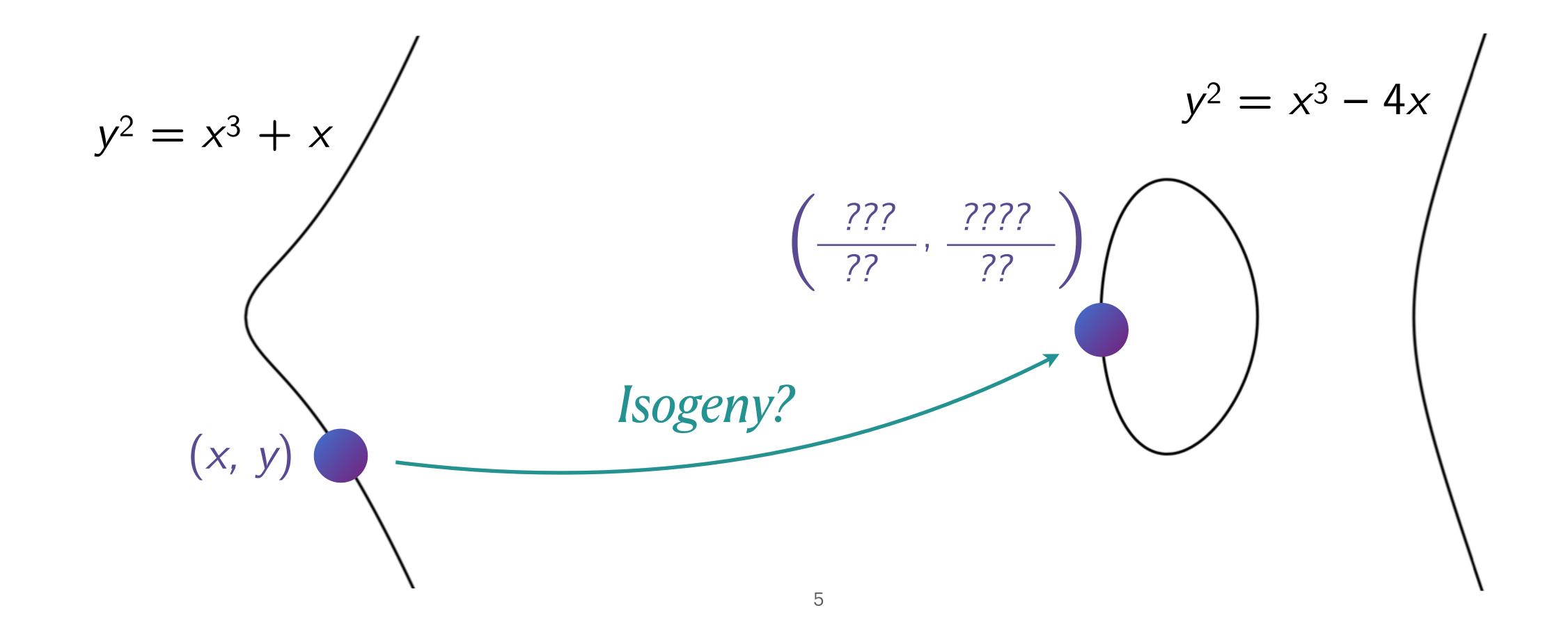




 Isogenies are group homomorphisms . Degree = size of kernel



 Isogenies are group homomorphisms . Degree = size of kernel



The Isogeny problem

Given E_1 and E_2 find an isogeny $\varphi: E_1 \to E_2$

The *Isogeny* problem Given E_1 and E_2 find an isogeny $\varphi: E_1 \rightarrow E_2$

- The solution φ is an isogeny...
- How to represent an isogeny?

The Isogeny problem Given E_1 and E_2 find an isogeny $\varphi: E_1 \rightarrow E_2$

- The solution φ is an isogeny...
- How to represent an isogeny?

$$(x, y) \longrightarrow$$

 $\left(\frac{x^2+1}{x}, \frac{y(x^2-1)}{x^2}\right)$

The *Isogeny* problem Given E_1 and E_2 find an isogeny $\varphi: E_1 \rightarrow E_2$

- The solution φ is an isogeny...
- How to represent an isogeny?

$$(x, y) \longrightarrow$$

$\left(\frac{x^2+1}{x}, \frac{y(x^2-1)}{x^2}\right)$ (degree 2) fine for small degree...

The Iso Given E_1 and E_2 find

- The solution φ is an isogeny.
- How to represent an isogeny

$$(x, y) \longrightarrow$$

by problem
d an isogeny
$$\varphi: E_1 \to E_2$$

and solution routinely
has degree = 2256
 $\left(\frac{x^2+1}{x}, \frac{y(x^2-1)}{x^2}\right)$ (degree 2)
fine for small degree...

The Iso Given E_1 and E_2 find

- The solution φ is an isogeny.
- How to represent an isogeny

$$(x, y) \longrightarrow$$

• Build "big" isogenies as forn $deg(\varphi \circ \psi)$

begins problem
d an isogeny
$$\varphi: E_1 \rightarrow E_2$$

...
y?
 $\left(\frac{x^2+1}{x}, \frac{y(x^2-1)}{x^2}\right)$
 $\left(\frac{x^2+1}{x}, \frac{y(x^2-1)}{x^2}\right)$

• Build "big" isogenies as formal combinations of "small" ones

 $deg(\varphi \circ \psi) = deg(\varphi) \cdot deg(\psi)$

The Iso Given E_1 and E_2 find

- The solution φ is an isogeny.
- How to represent an isogen

$$(x, y) \longrightarrow$$

• Build "big" isogenies as formal combinations of "small" ones $E_1 \xrightarrow{\bullet} E_2 \xrightarrow{\bullet} E_3 \xrightarrow{\bullet} \dots \xrightarrow{\bullet} E_{257}$

by geny problem
d an isogeny
$$\varphi: E_1 \rightarrow E_2$$

where $E_1 \rightarrow E_2$
solution typically
has degree = 2256
 $\left(\frac{x^2+1}{x}, \frac{y(x^2-1)}{x^2}\right)$ (degree 2)
fine for small degree...

The Iso Given E_1 and E_2 find

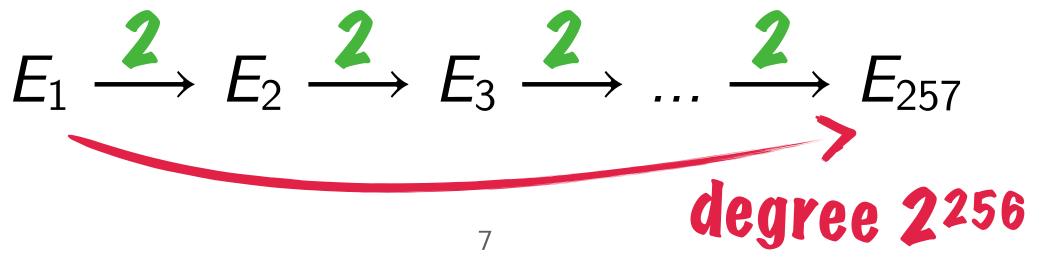
- The solution φ is an isogeny.
- How to represent an isogeny

$$(x, y) \longrightarrow$$

• Build "big" isogenies as form $E_1 \xrightarrow{2} E_2 \xrightarrow{2}$

by problem
d an isogeny
$$\varphi: E_1 \rightarrow E_2$$

solution typically
has degree = 2256
 $\left(\frac{x^2+1}{x}, \frac{y(x^2-1)}{x^2}\right)$ (degree 2)
fine for small degree...
hal combinations of "small" ones



The Iso Given E_1 and E_2 find

- The solution φ is an isogeny.
- How to represent an isogen

$$(x, y) \longrightarrow$$

- Build "big" isogenies as form
 - $\varphi \circ \psi$ represented by ('comp', φ , ψ) where φ and ψ are composable

by problem
d an isogeny
$$\varphi: E_1 \rightarrow E_2$$

and solution typically
has degree $\approx 2^{256}$
 $\left(\frac{x^2+1}{x}, \frac{y(x^2-1)}{x^2}\right)$ (degree 2)
fine for small degree...
hal combinations of "small" ones

• $\varphi + \psi$ represented by ('add', φ , ψ) where φ and ψ are both $E_1 \rightarrow E_2$

The *Isogeny* problem Given E_1 and E_2 find an isogeny $\varphi: E_1 \to E_2$ • The solution φ is an isogeny... solution typically has dearee ≈ 2256

- How to represent an isogeny?
 - evaluate $\varphi(P)$ in polynomial time for any P

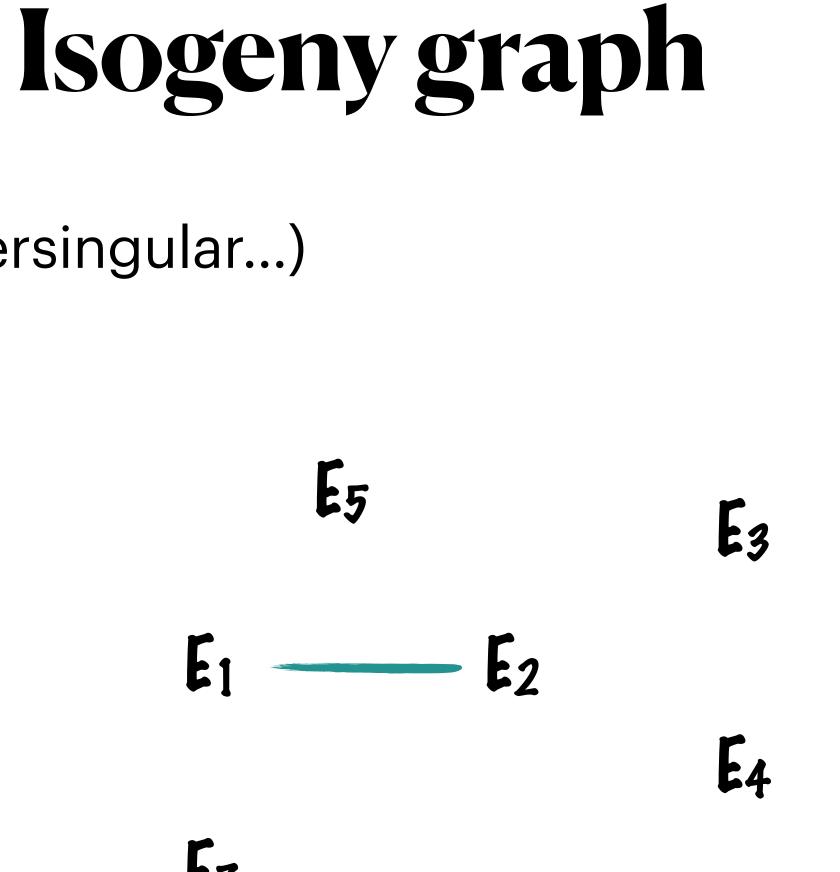
any efficient representation: an encoding which allows one to

an isogeny of degree 2 = an edge in a graph

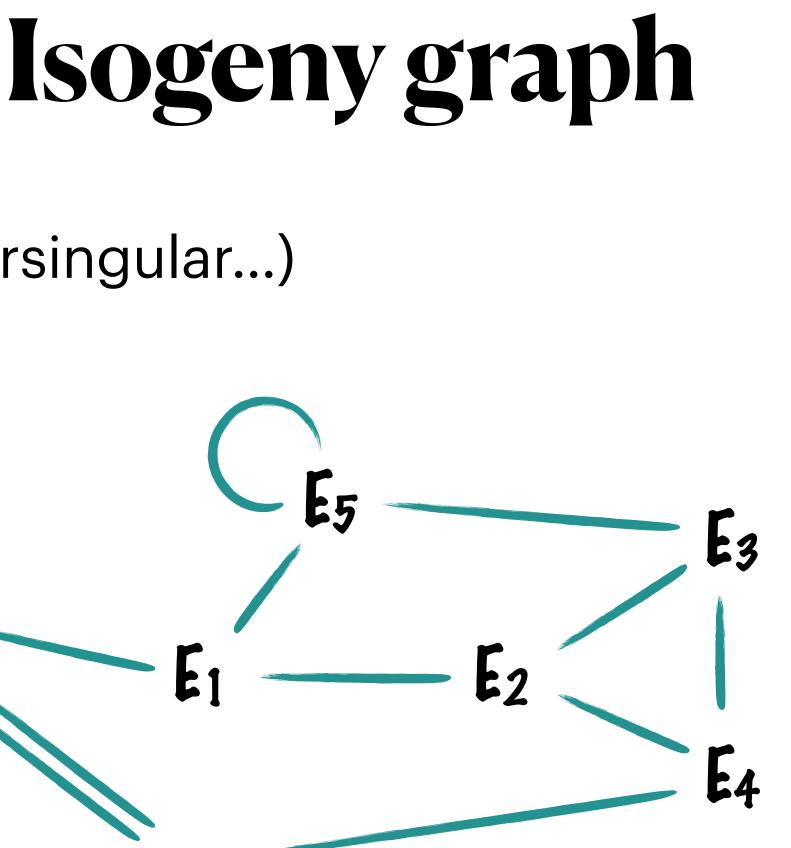
Isogeny graph

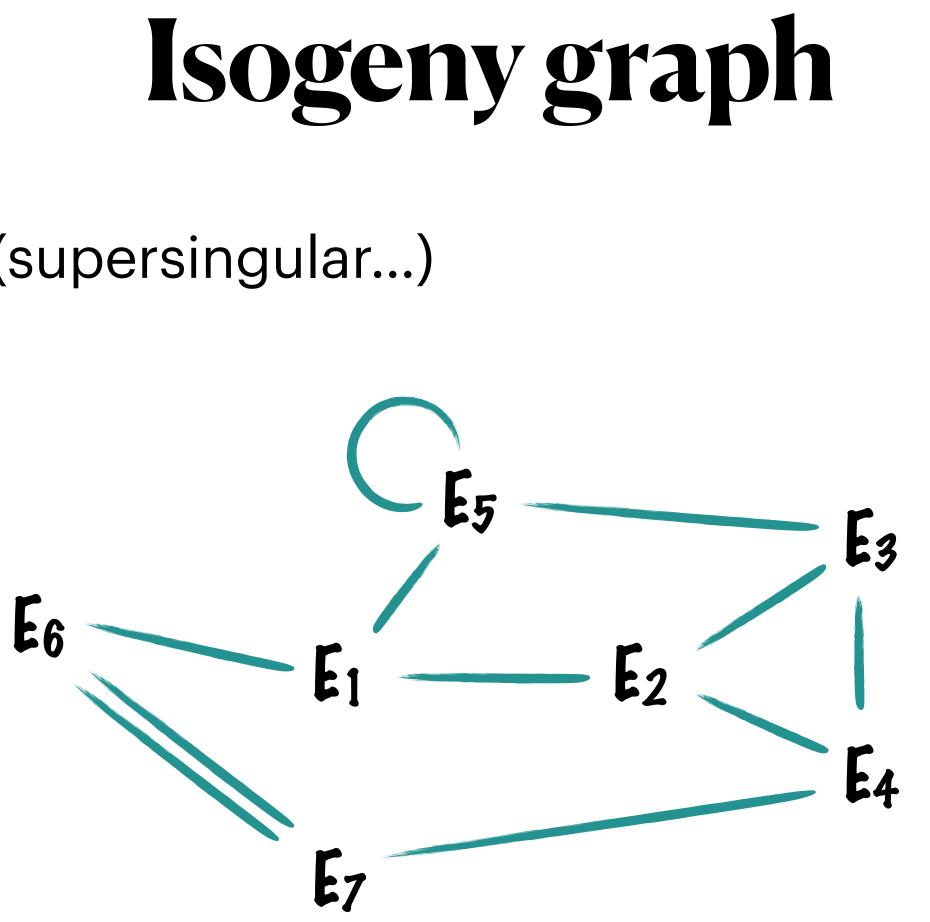
Isogeny graph

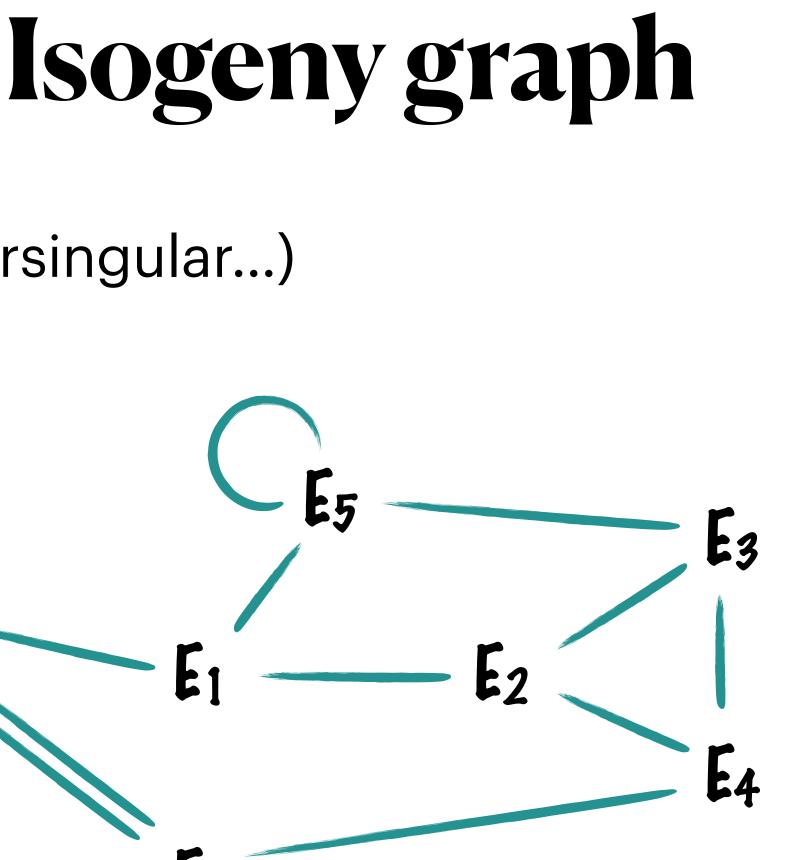
 $E_1 - E_2$

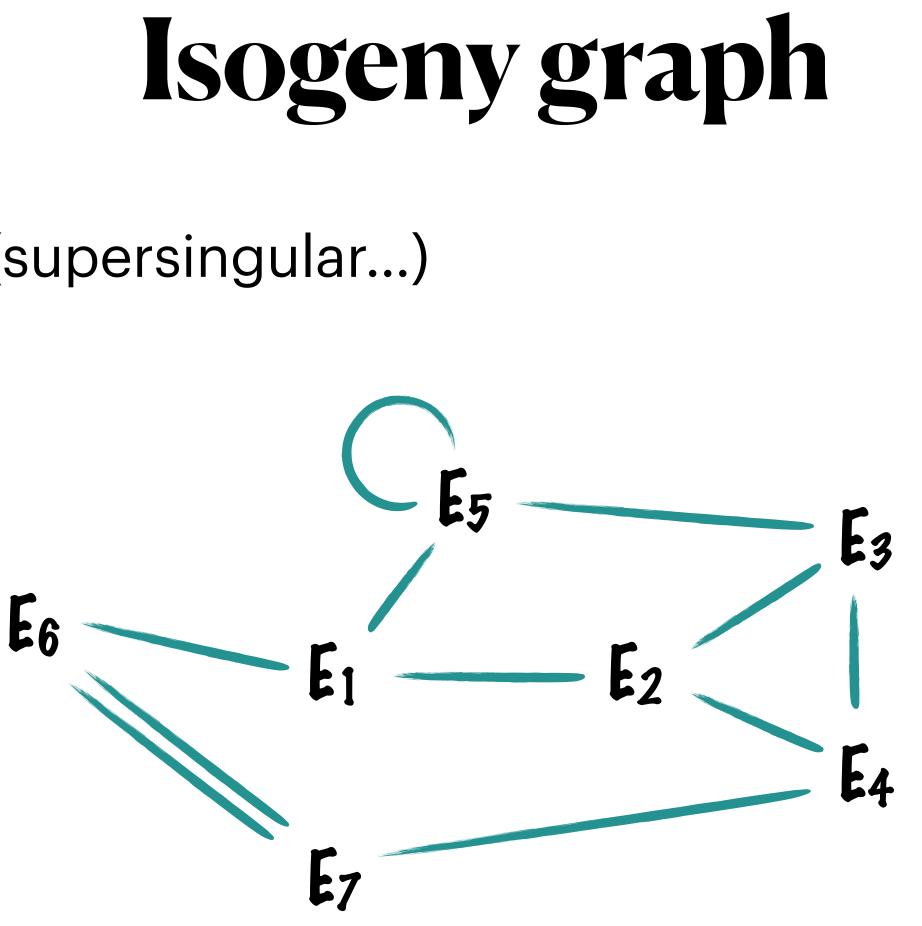


E7

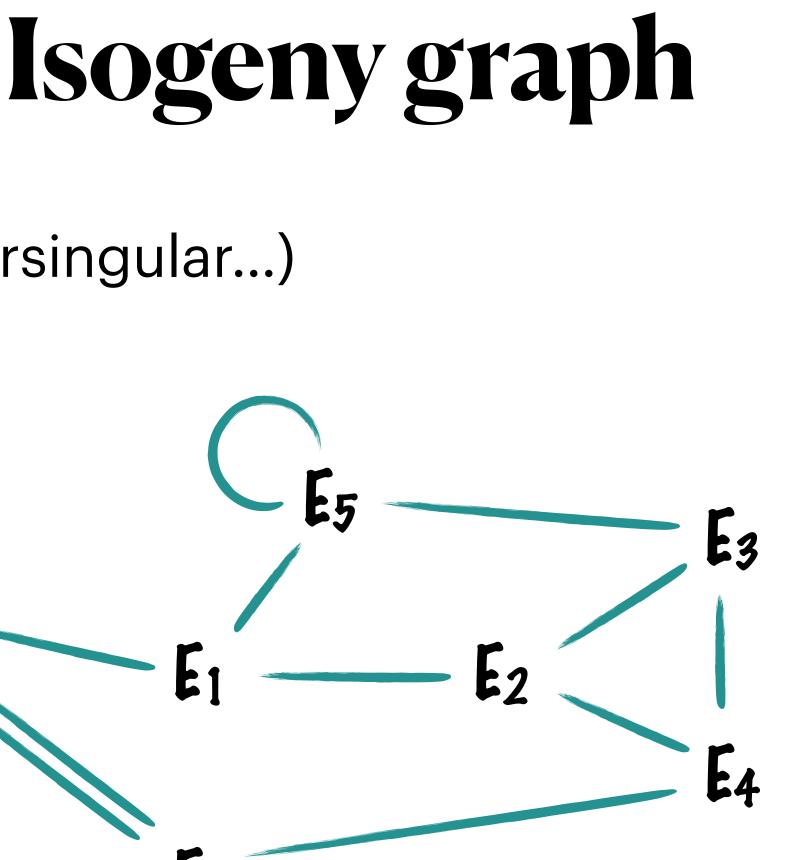


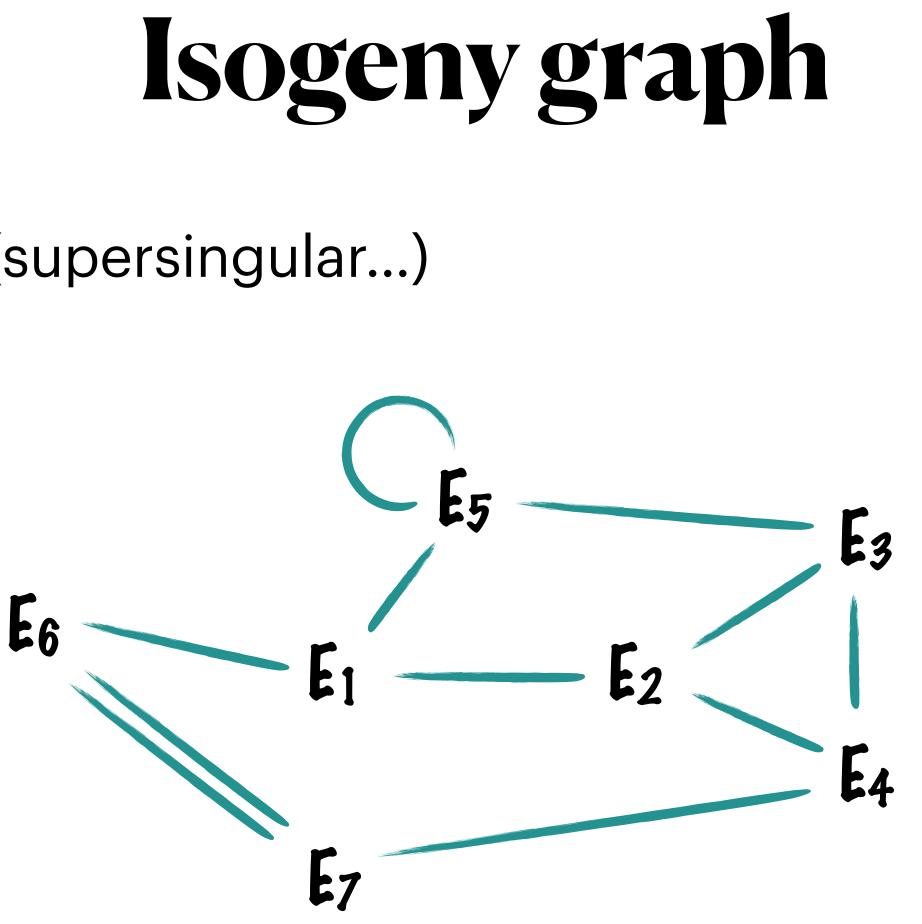




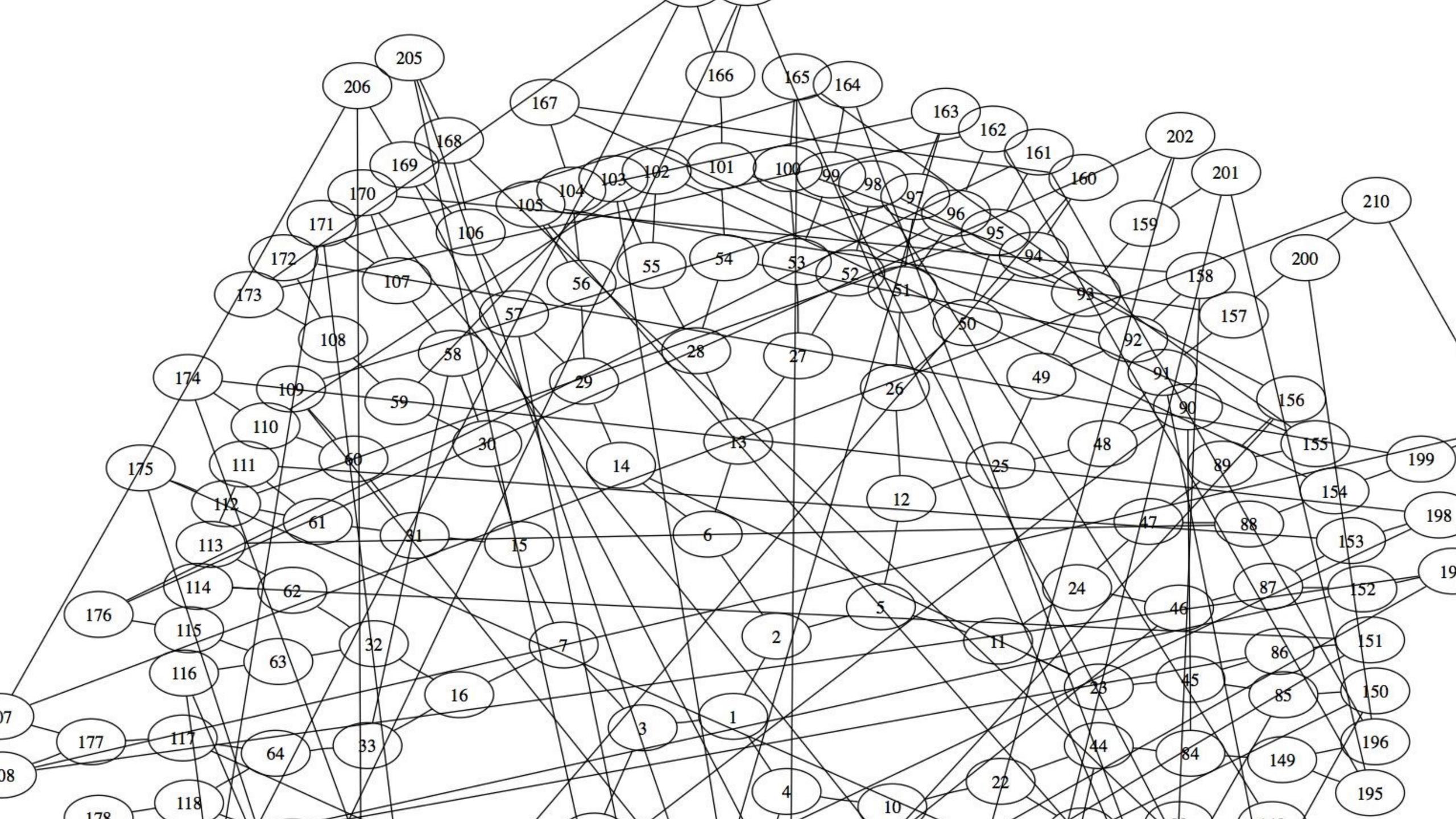


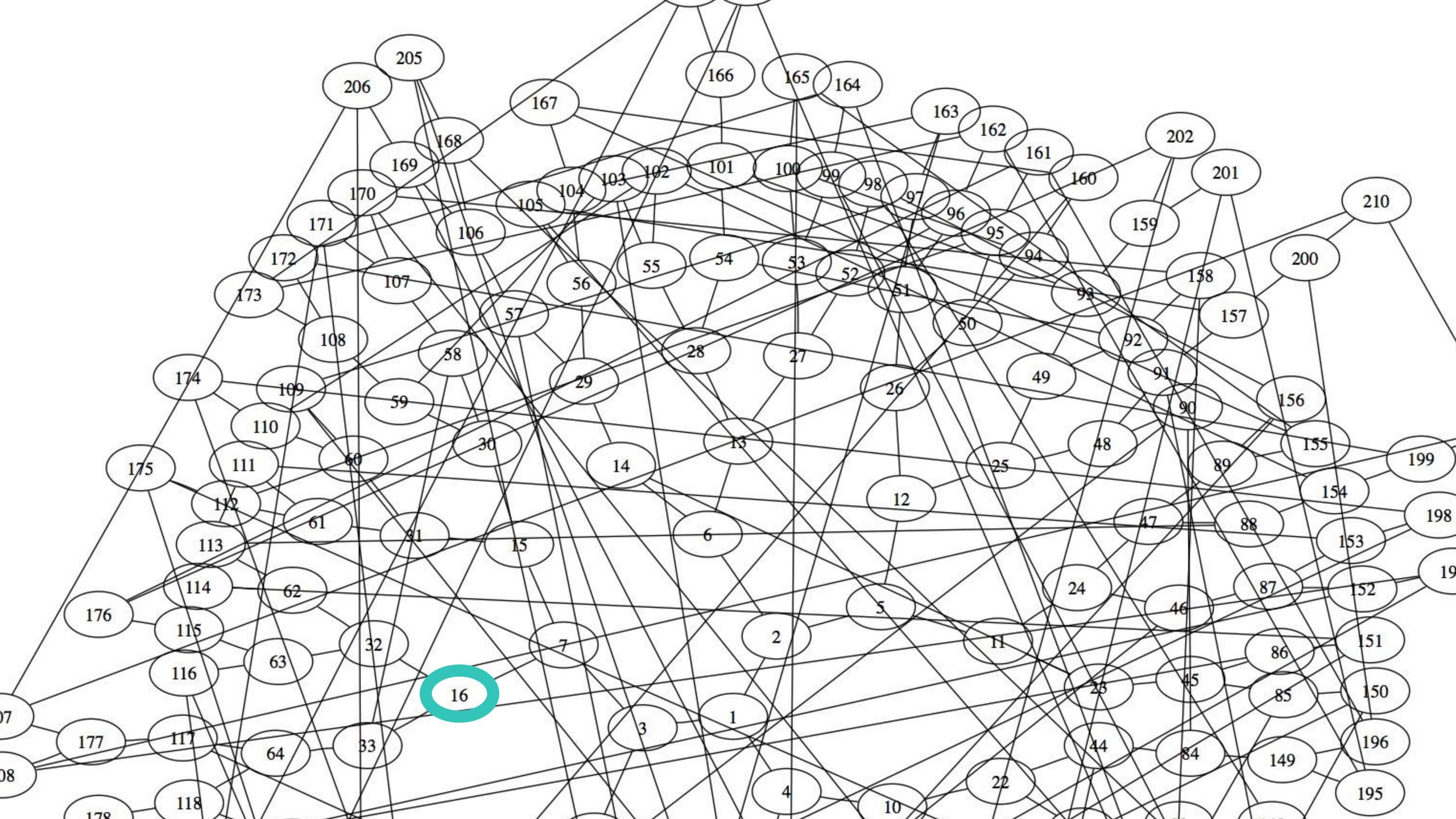
• 3-regular, **connected** (for supersingular curves)

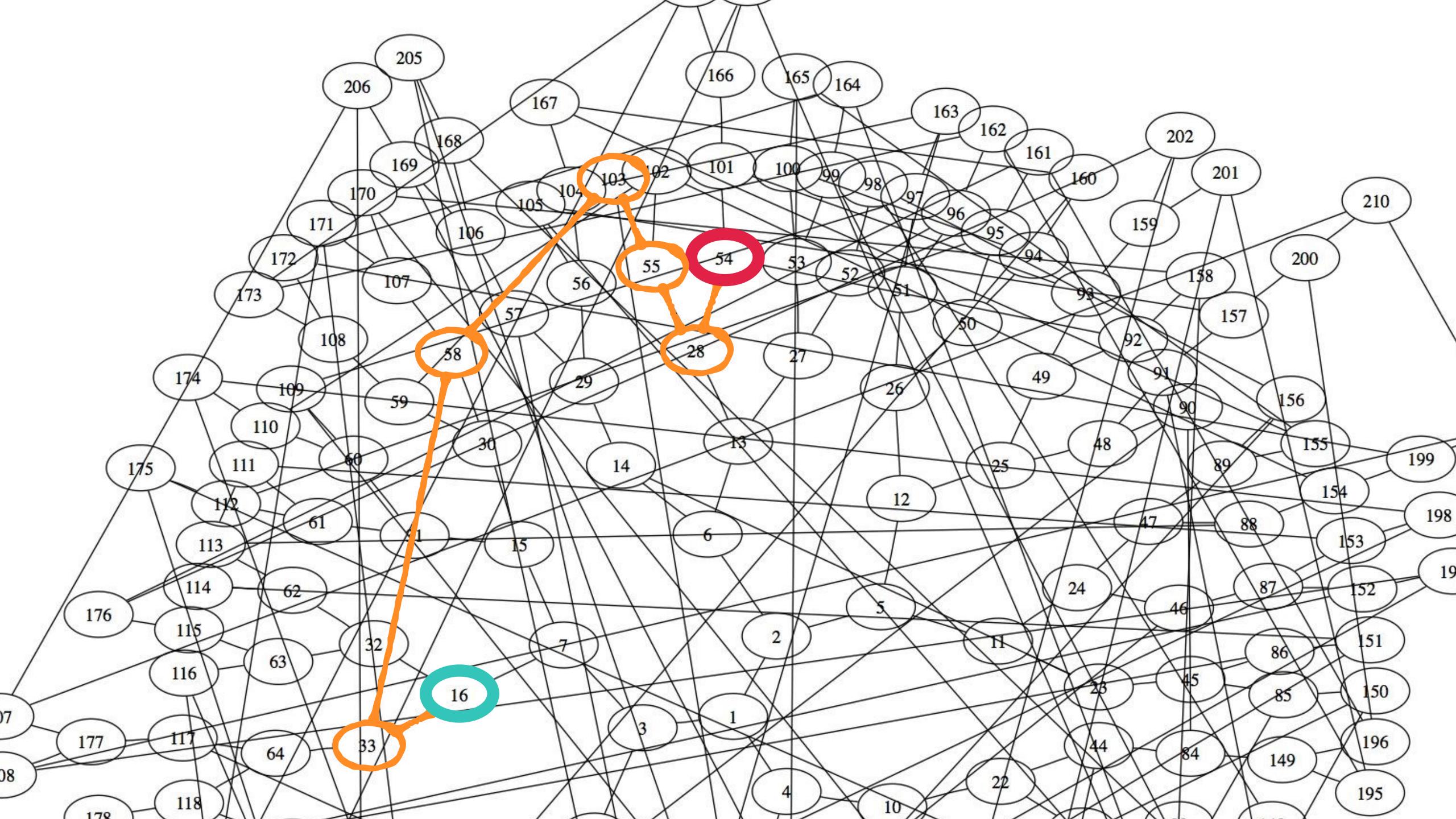


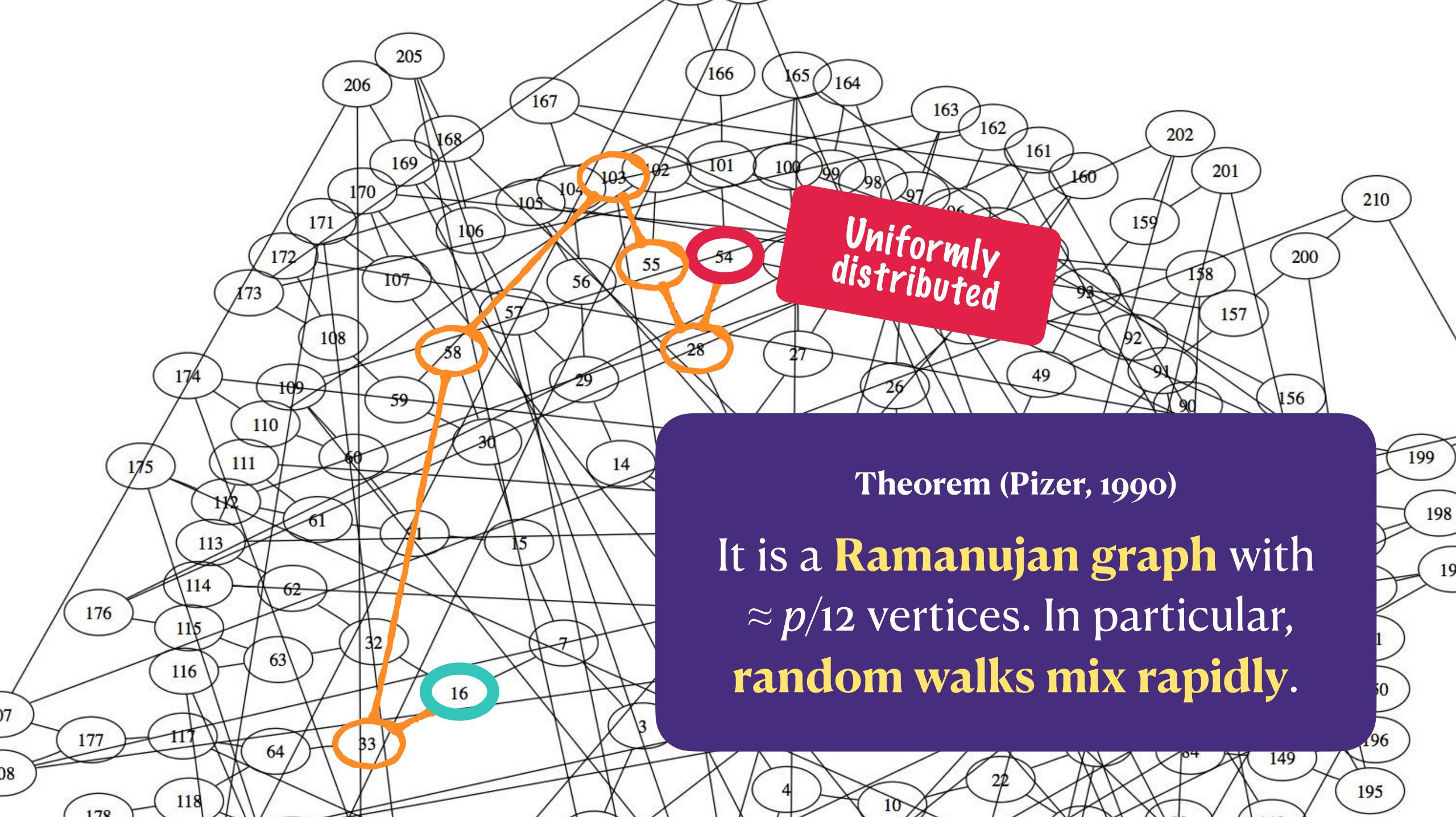


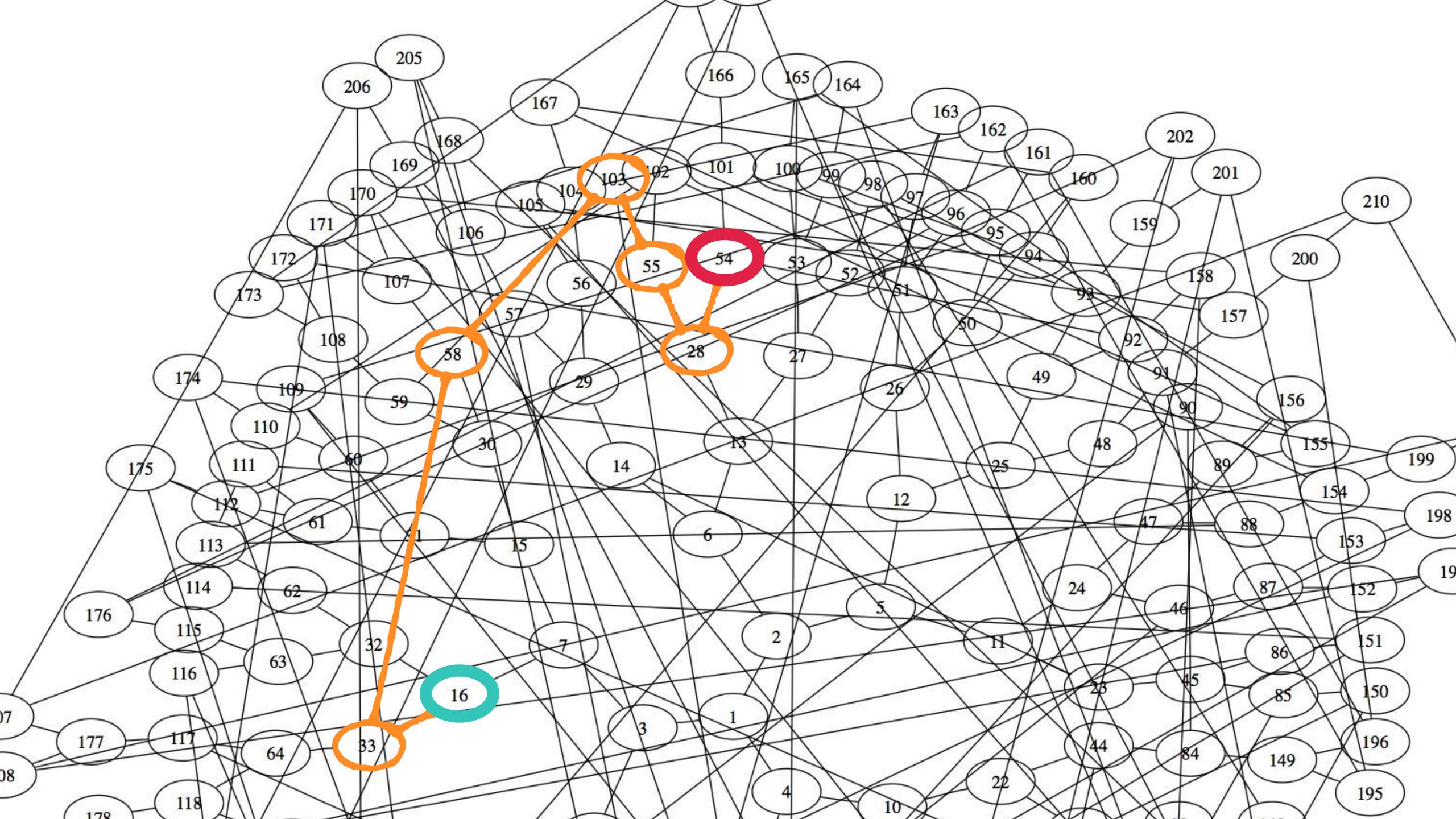
- 3-regular, **connected** (for supersingular curves)
- Paths = isogenies of degree 2^n

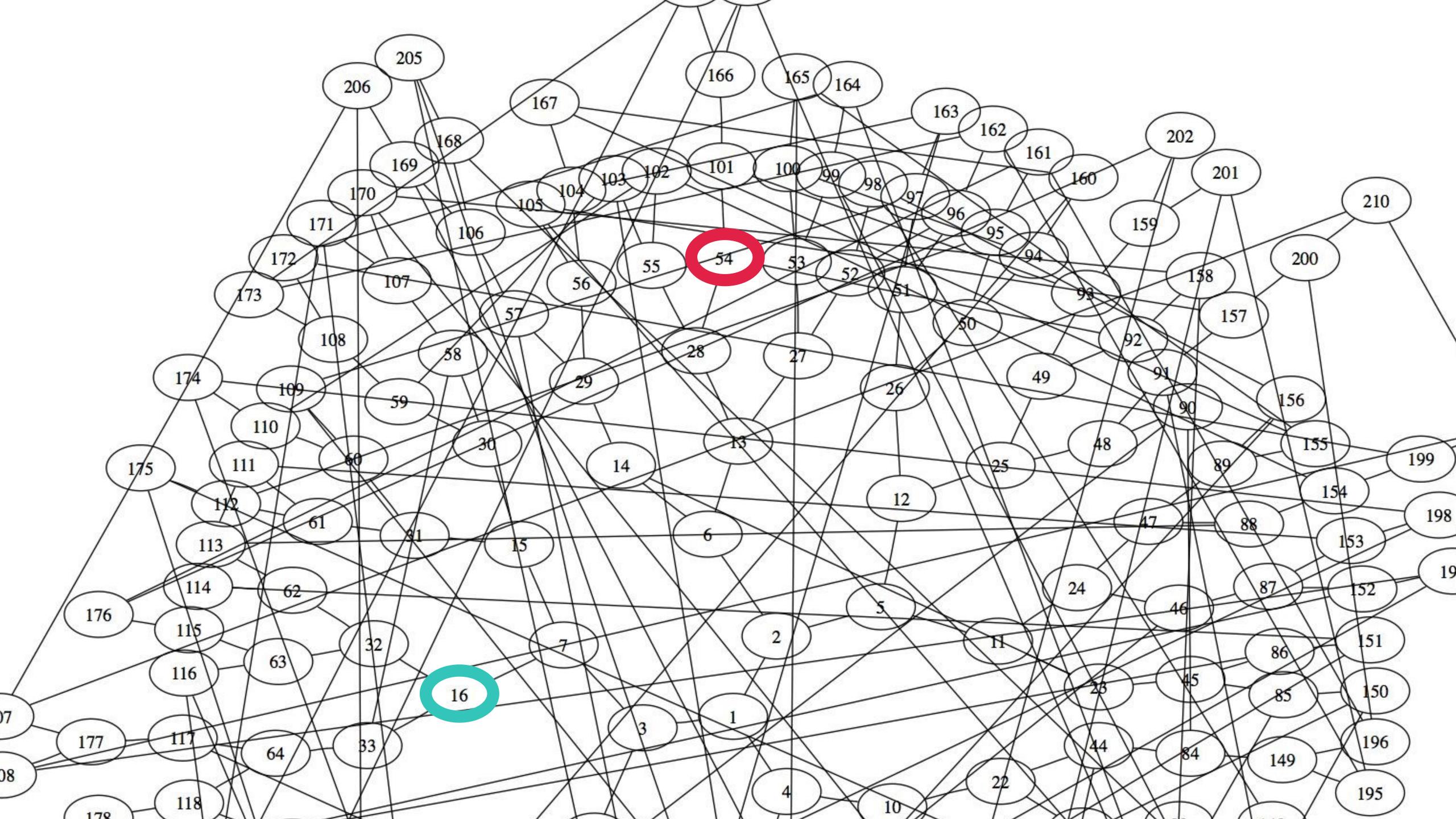


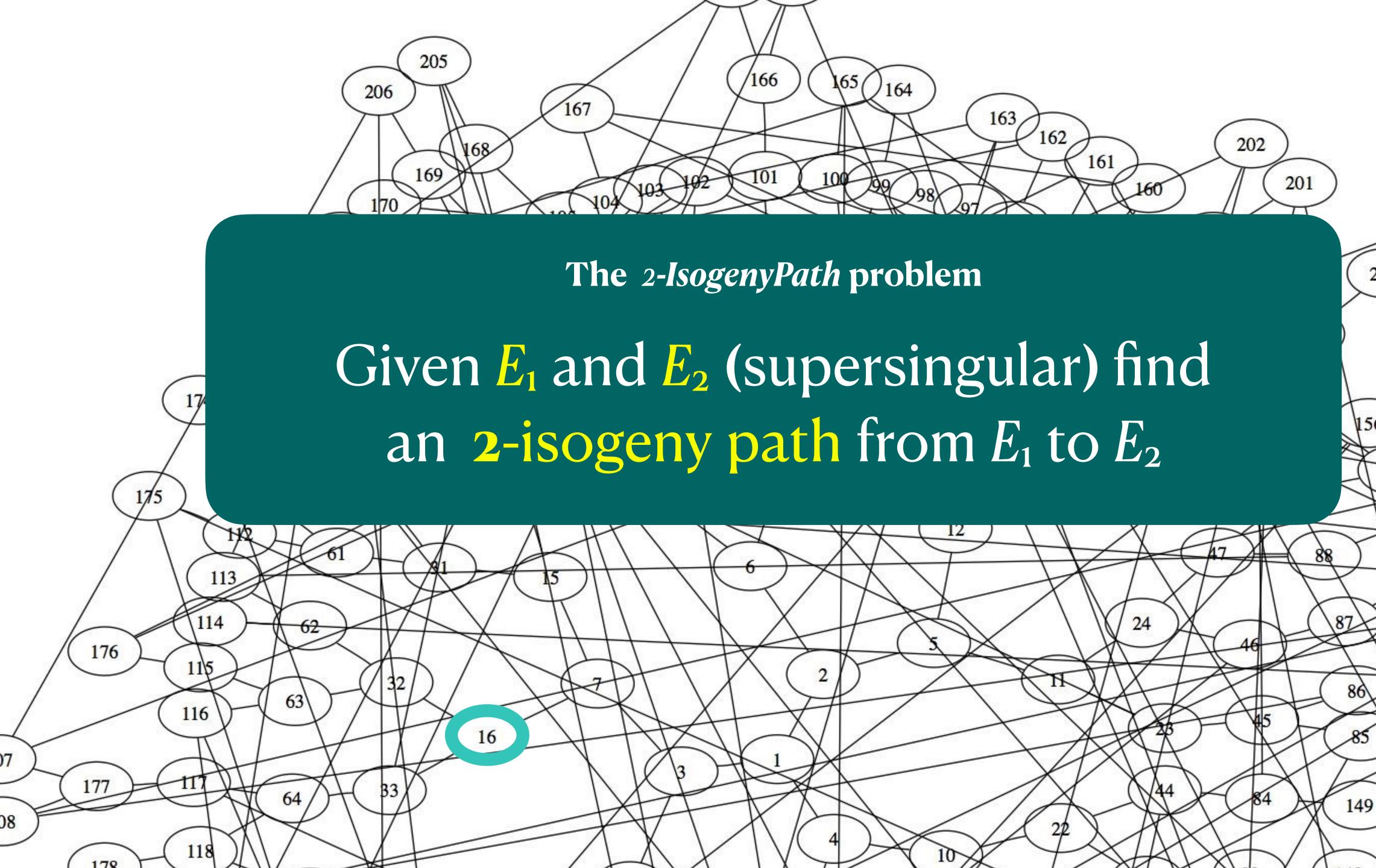


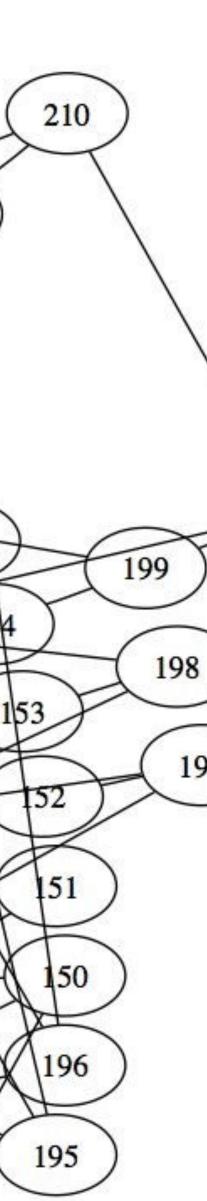


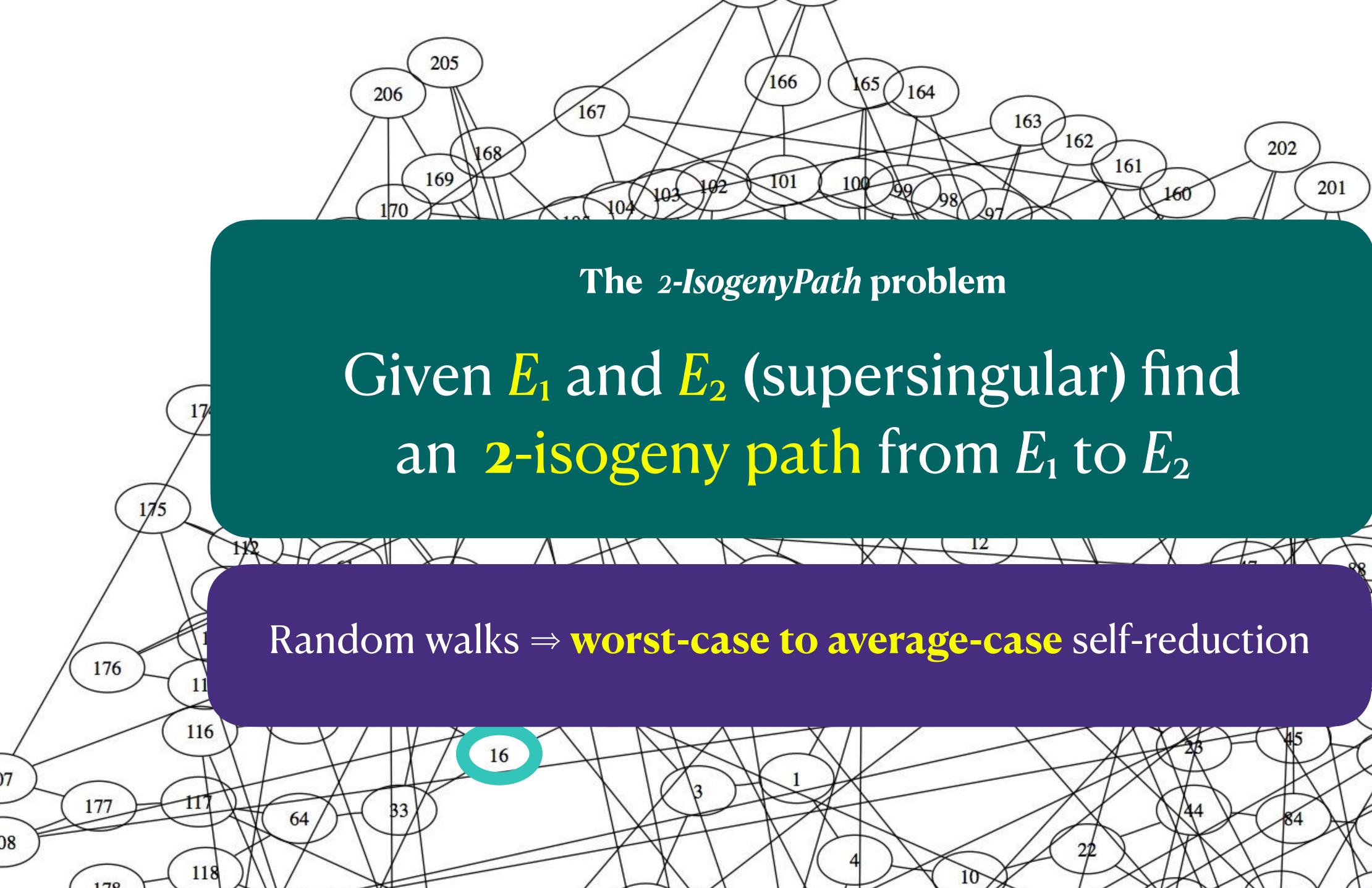


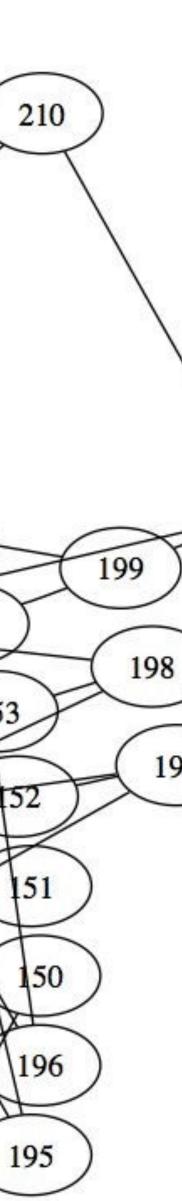












Interpolation Representing arbitrary isogenies

Picture by Beppe Rijs

Attacks against SIDH [Eurocrypt 2023: Castryck & Decru, MMPPW, Robert]:

- Attacks against SIDH [Eurocrypt 2023: Castryck & Decru, MMPPW, Robert]:
- Let $\varphi: E_1 \to E_2$ of degree d

Attacks against SIDH [Eurocrypt 2023: Castryck & Decru, MMPPW, Robert]:

- Let $\varphi: E_1 \to E_2$ of degree d
- Let (P, Q) is a basis of $E_1[2^n]$, with $2^{2n} > 4 \cdot \text{deg}(\varphi)$

Attacks against SIDH [Eurocrypt 2023: Castryck & Decru, MMPPW, Robert]:

- Let $\varphi: E_1 \to E_2$ of degree d
- Let (P, Q) is a basis of $E_1[2^n]$, with $2^{2n} > 4 \cdot \text{deg}(\varphi)$

a subgroup of E₁ of order 2²ⁿ

Attacks against SIDH [Eurocrypt 2023: Castryck & Decru, MMPPW, Robert]:

- Let $\varphi: E_1 \to E_2$ of degree d
- Let (P, Q) is a basis of $E_1[2^n]$, with $2^{2n} > 4 \cdot \text{deg}(\varphi)$
- Given (d, P, Q, $\varphi(P)$, $\varphi(Q)$), one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time
- : Castryck & Decru, MMPPW, Robert]: a subgroup of E₁ of order 2²ⁿ

Attacks against SIDH [Eurocrypt 2023: Castryck & Decru, MMPPW, Robert]:

- Let $\varphi: E_1 \to E_2$ of degree d
- Let (P, Q) is a basis of $E_1[2^n]$, with $2^{2n} > 4 \cdot \text{deg}(\varphi)$
- Given $(d, P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time

a subgroup of E₁ of order 2²ⁿ

Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Attacks against SIDH [Eurocrypt 2023: Castryck & Decru, MMPPW, Robert]:

- Let $\varphi: E_1 \to E_2$ of degree d
- Let (P, Q) is a basis of $E_1[2^n]$, with $2^{2n} > 4 \cdot \text{deg}(\varphi)$
- Given $(d, P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time

representation", or "HD representation »

a subgroup of E₁ of order 2²ⁿ

Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

Corollary: (d, P, Q, $\varphi(P)$, $\varphi(Q)$) is an efficient representation of φ , the "**interpolation**"

Attacks against SIDH [Eurocrypt 2023: Castryck & Decru, MMPPW, Robert]:

- Let $\varphi: E_1 \to E_2$ of degree d
- Let (P, Q) is a basis of $E_1[2^n]$, with $2^{2n} > 4 \cdot \text{deg}(\varphi)$
- Given $(d, P, Q, \varphi(P), \varphi(Q))$, one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time

representation", or "HD representation »

Cost? evaluating an isogeny of degree 2^{2n} in dimension 2, 4 or 8

a subgroup of E₁ of order 2²ⁿ

Interpolation: Knowing φ on a few points \Rightarrow Knowing φ everywhere

- **Corollary:** (d, P, Q, $\varphi(P)$, $\varphi(Q)$) is an efficient representation of φ , the "**interpolation**"

- Corollary: $(d, P, Q, \varphi(P)$ Fastest, but requires representation of φ , the "interpolation representation", or "HD region degree degr

Cost? evaluating an isogeny of degree 2^{2n} in dimension 2, 4 or 8

- Corollary: (d, P, Q, $\varphi(P)$ Fastest, but requires representation", or "HD re $2^{2n} d = a^{2n}$ "

Cost? evaluating an isogeny of degree 2^{2n} in dimension 2, 4 or 8

• Given (d, P, Q, $\varphi(P)$, $\varphi(Q)$), one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time **Somewhat fast, but** Interpolation: Knowing φ on a frequires $2^{2n} - d = a^2 + b^2 ng \varphi$ everywhere

representation of φ , the "interpolation"

- Corollary: (d, P, Q, $\varphi(P)$ Fastest, but requires representation", or "HD re $2^{2n} d = a^{2n}$ "

Cost? evaluating an isogeny of degree 2^{2n} in dimension 2, 4 or 8

• Given (d, P, Q, $\varphi(P)$, $\varphi(Q)$), one can compute $\varphi(R)$ for any $R \in E_1$ in poly. time Somewhat fast, but Interpolation: Knowing φ on a frequires $2^{2n} - d = a^2 + b^2 ng \varphi$ everyw

Very costly, but always works

The Isogeny problem

Given E_1 and E_2 supersingular, find an isogeny $\varphi: E_1 \rightarrow E_2$ in interpolation representation

2-IsogenyPath

[Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018] / [W.

/ [W. - FOCS 2021] + [Page, W. - Eurocrypt 2024]

Endomorphisms and computational problems

Picture by Beppe Rijs

An **endomorphism** of *E* is an isogeny $\varphi : E \to E$ (or the zero map [0])

An **endomorphism** of *E* is an isogeny $\varphi : E \to E$ (or the zero map [0])

The **endomorphism ring** of *E* is $End(E) = \{\varphi : E \rightarrow E\}$

- An **endomorphism** of *E* is an isogeny $\varphi : E \to E$ (or the zero map [0])
- The **endomorphism ring** of *E* is $End(E) = \{\varphi : E \rightarrow E\}$
 - $\varphi + \psi$ is pointwise addition: $(\varphi + \psi)(P) = \varphi(P) + \psi(P)$
 - $\varphi\psi$ is the composition: $(\varphi\psi)(P) = \varphi(\psi(P))$

- An **endomorphism** of *E* is an isogeny $\varphi : E \to E$ (or the zero map [0])
- The **endomorphism ring** of *E* is $End(E) = \{\varphi : E \rightarrow E\}$
 - $\varphi + \psi$ is pointwise addition: $(\varphi + \psi)(P) = \varphi(P) + \psi(P)$
 - $\varphi\psi$ is the composition: $(\varphi\psi)(P) = \varphi(\psi(P))$
- Multiplication by $m \in \mathbb{Z}$ is an endomorphism $[m]: E \rightarrow E: P \mapsto P + ... + P$
- It forms a subring $\mathbb{Z} \subset \text{End}(E)$

What is the structure of End(E)?

• It contains $\mathbb{Z} \subset \text{End}(E)$...

What is the structure of End(*E*)?

- It contains $\mathbb{Z} \subset \text{End}(E)$...
- (End(*E*), +) is a **lattice** of dimension 2 or 4

What is the structure of End(E)?

• It contains $\mathbb{Z} \subset \text{End}(E)$...

 \bullet

 \bullet

• (End(*E*), +) is a **lattice** of dimension 2 or 4

2 Or 4

 \bullet

 \bullet

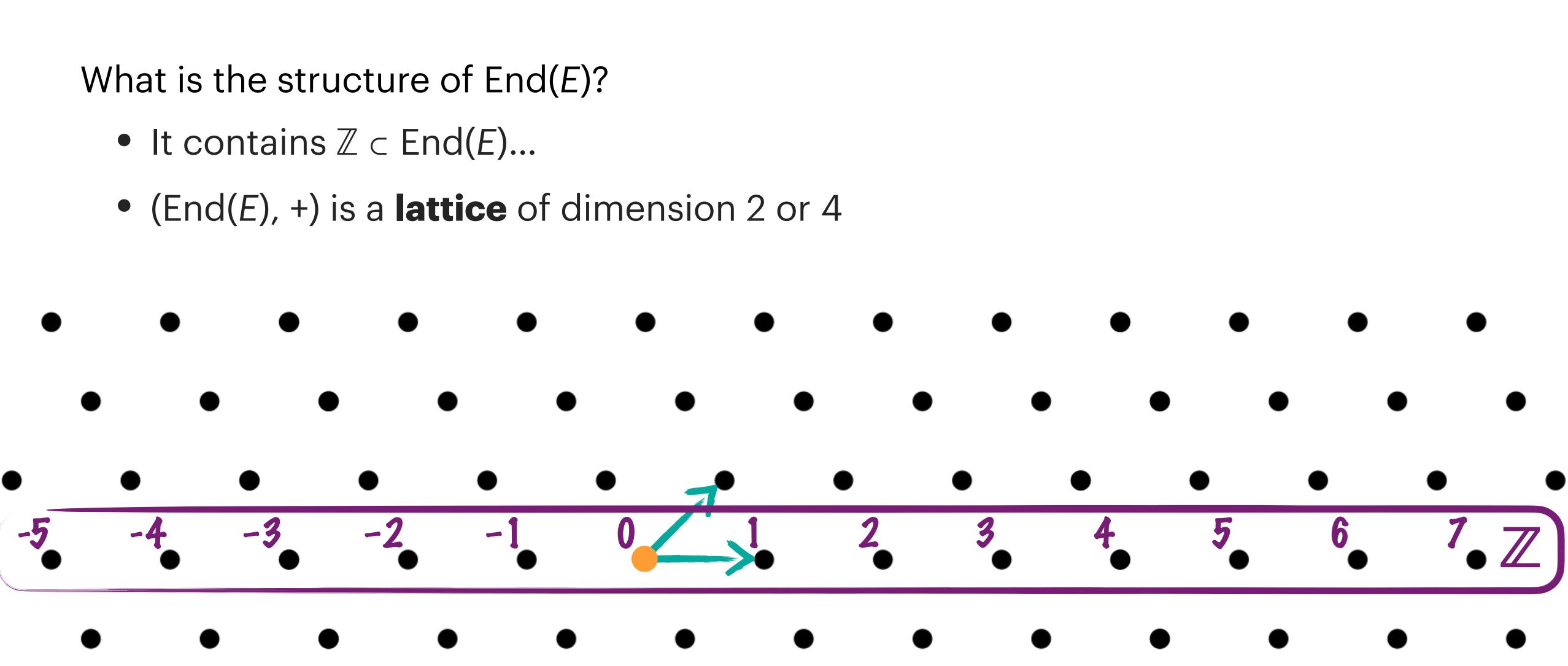
 \bullet

 \bullet \bullet

 \bullet

 \bullet

 \bullet

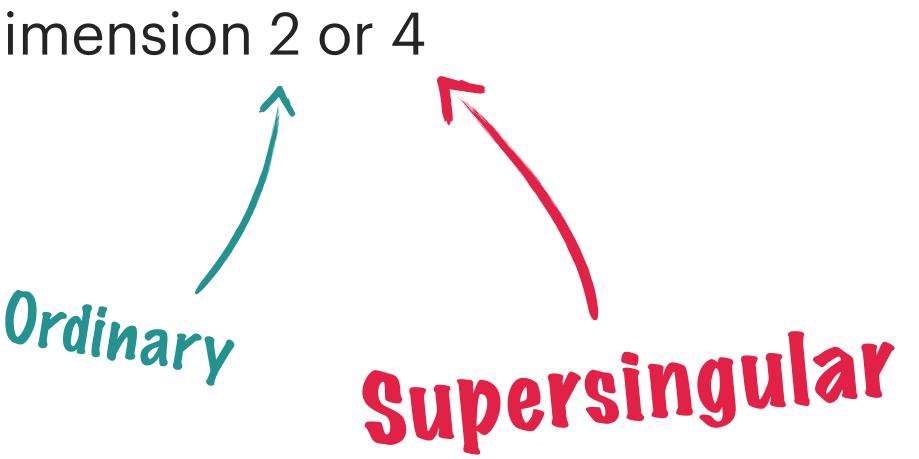


What is the structure of End(*E*)?

- It contains $\mathbb{Z} \subset \text{End}(E)$...
- (End(*E*), +) is a **lattice** of dimension 2 or 4

What is the structure of End(E)?

- It contains $\mathbb{Z} \subset \text{End}(E)$...
- (End(E), +) is a **lattice** of dimension 2 or 4



The endomorphism ring problem

For E supersingular End(E) = { $\varphi : E \rightarrow E$ } is a lattice of dimension 4

The *EndRing* problem

Given E (supersingular) find 4 generators of the endomorphism ring End(E)

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Example

- **Consider** $E_0: y^2 = x^3 + x$

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Two non-scalar endomorphisms:

- **Consider** $E_0: y^2 = x^3 + x$

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Two non-scalar endomorphisms:

• $\iota: E_0 \rightarrow E_0: (x, y) \mapsto (-x, \alpha y)$

- **Consider** $E_0: y^2 = x^3 + x$

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Two non-scalar endomorphisms:

• $\iota: E_0 \rightarrow E_0: (x, y) \mapsto (-x, \alpha y)$

- **Consider** $E_0: y^2 = x^3 + x$

 $l^2 = [-1]$

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Two non-scalar endomorphisms:

- $\iota: E_0 \rightarrow E_0: (x, y) \mapsto (-x, \alpha y)$
- $\pi: E_0 \rightarrow E_0: (x, y) \mapsto (x^p, y^p)$

- **Consider** $E_0: y^2 = x^3 + x$

 $l^2 = [-1]$

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Two non-scalar endomorphisms:

- $\iota: E_0 \rightarrow E_0: (x, y) \mapsto (-x, \alpha y)$
- $\pi: E_0 \rightarrow E_0: (x, y) \mapsto (x^p, y^p)$

- **Consider** $E_0: y^2 = x^3 + x$
 - $l^2 = [-1]$ $l\pi = -\pi l$

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Two non-scalar endomorphisms:

- $\iota: E_0 \rightarrow E_0: (x, y) \mapsto (-x, \alpha y)$
- $\pi: E_0 \rightarrow E_0: (x, y) \mapsto (x^p, y^p)$

- Consider $E_0: y^2 = x^3 + x$

 $\iota^{2} = [-1] \qquad \qquad \pi^{2} = [-p]$ $\iota \pi = -\pi \iota$

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Two non-scalar endomorphisms:

- $\iota: E_0 \rightarrow E_0: (x, y) \mapsto (-x, \alpha y)$
- $\pi: E_0 \rightarrow E_0: (x, y) \mapsto (x^p, y^p)$

$\mathbf{End}(\mathbf{E_0}) \stackrel{?}{=} \mathbb{Z} \oplus \mathbb{Z} \iota \oplus \mathbb{Z}$

- **Consider** $E_0: y^2 = x^3 + x$

$$\iota^{2} = [-1]$$

$$\pi^{2} = [-p]$$

$$\iota^{\pi} = -\pi\iota$$

$$\mathbb{Z}\pi \oplus \mathbb{Z}\iota\pi$$

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Two non-scalar endomorphisms:

- $\iota: E_0 \rightarrow E_0: (x, y) \mapsto (-x, \alpha y)$
- $\pi: E_0 \rightarrow E_0: (x, y) \mapsto (x^p, y^p)$

$\mathsf{End}(\mathbf{E_0}) = \mathbb{Z} \oplus \mathbb{Z}_{\ell} \oplus \mathbb{Z}$

- **Consider** $E_0: y^2 = x^3 + x$

$$\iota^{2} = [-1]$$

 $\pi^{2} = [-p]$
 $\iota^{\pi} = -\pi\iota$

$$\mathbb{Z} \frac{\iota + \pi}{2} \oplus \mathbb{Z} \frac{1 + \iota \pi}{2}$$

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Two non-scalar endomorphisms:

- $\iota: E_0 \rightarrow E_0: (x, y) \mapsto (-x, \alpha y)$
- $\pi: E_0 \rightarrow E_0: (x, y) \mapsto (x^p, y^p)$

$End(E_0) = \mathbb{Z} \oplus \mathbb{Z} \cup \mathbb{Z}$

- Consider $E_0: y^2 = x^3 + x$

$$\iota^{2} = [-1]$$

 $\tau^{2} = [-p]$
 $\tau^{2} = [-p]$

$$\mathbb{Z} \frac{\iota + \pi}{2} \oplus \mathbb{Z} \frac{1 + \iota \pi}{2}$$
 EndRing

Quaternion algebra

- The quaternion algebra $B_{p,\infty}$ is the ring (for $p \equiv 3 \pmod{4}$) $B_{p,\infty} = \mathbb{Q} \oplus \mathbb{Q} \ i \oplus \mathbb{Q} \ j \oplus \mathbb{Q} \ k$
- where $i^{2} = -1$, $j^{2} = -p$, and k = ij = -ji

Quaternion algebra

- The quaternion algebra $B_{p,\infty}$ is the ring (for $p \equiv 3 \pmod{4}$) $B_{\mathcal{P},\infty} = \mathbb{Q} \oplus \mathbb{Q} \ i \oplus \mathbb{Q} \ j \oplus \mathbb{Q} \ k$
- where $i^{2} = -1$, $j^{2} = -p$, and k = ij = -ji

End(E) is (isomorphic to) a discrete subrings of $B_{\rho,\infty}$

Quaternion algebra

- The quaternion algebra $B_{p,\infty}$ is the ring (for $p \equiv 3 \pmod{4}$) $B_{\mathcal{D},\infty} = \mathbb{Q} \oplus \mathbb{Q} \ i \oplus \mathbb{Q} \ j \oplus \mathbb{Q} \ k$
- where $i^{2} = -1$, $j^{2} = -p$, and k = ij = -ji
- End(E) is (isomorphic to) a discrete subrings of $B_{p,\infty}$ • End(E) is a maximal order in $B_{p,\infty}$

Quaternion algebra

- The quaternion algebra $B_{p,\infty}$ is the ring (for $p \equiv 3 \pmod{4}$) $B_{\mathcal{D},\infty} = \mathbb{Q} \oplus \mathbb{Q} \ i \oplus \mathbb{Q} \ j \oplus \mathbb{Q} \ k$
- where $i^{2} = -1$, $j^{2} = -p$, and k = ij = -ji

End(E) is (isomorphic to) a discrete subrings of $B_{p,\infty}$

- End(E) is a maximal order in $B_{p,\infty}$
- There are many maximal orders in $B_{p,\infty}$

Example

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Two non-scalar endomorphisms:

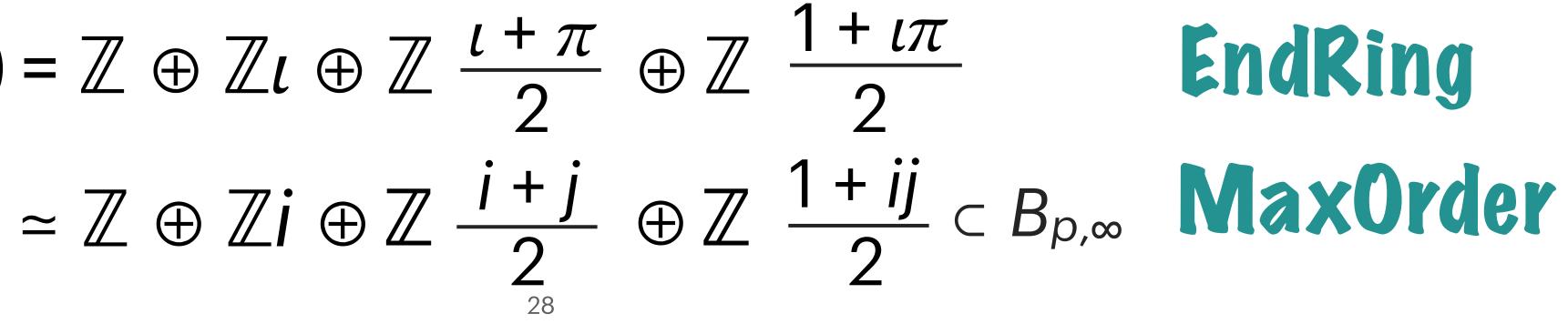
- $\iota: E_0 \to E_0: (x, y) \mapsto (-x, \alpha y)$
- $\pi: E_0 \rightarrow E_0: (x, y) \mapsto (x^p, y^p)$

$\mathbf{End}(\mathbf{E_0}) = \mathbb{Z} \oplus \mathbb{Z} \iota \oplus \mathbb{Z} \frac{\iota + \pi}{2} \oplus \mathbb{Z} \frac{1 + \iota \pi}{2}$

- **Consider** $E_0: y^2 = x^3 + x$

$$\iota^{2} = [-1]$$

 $\iota^{2} = [-1]$
 $\pi^{2} = [-p]$



One Endomorphism

- We always have $\mathbb{Z} \subset \text{End}(E)$, that part is easy
- Finding any **non-scalar** endomorphism?

One Endomorphism

- We always have $\mathbb{Z} \subset \text{End}(E)$, that part is easy
- Finding any **non-scalar** endomorphism?

The OneEnd problem Given *E* (supersingular) find one endomorphism $\alpha \in End(E) \setminus Z$

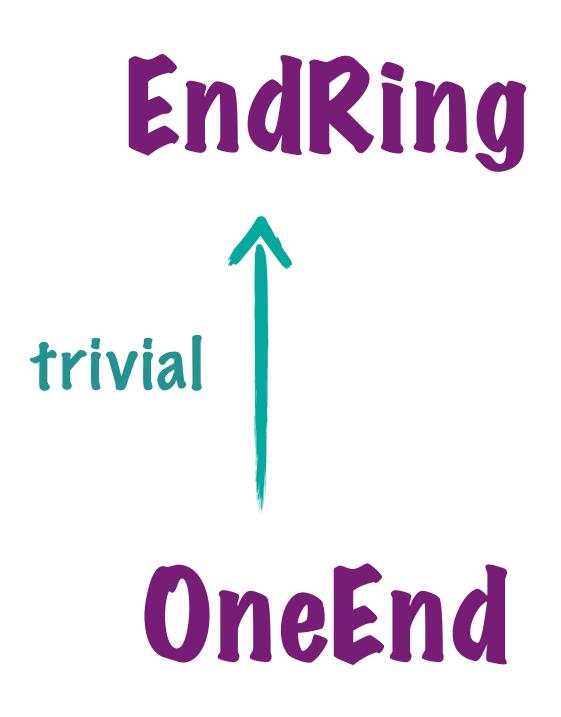
Which is hardest? Easiest?

EndRing

OneEnd

2-lsogenyPath GRH Isogeny

Which is hardest? Easiest?



2-lsogenyPath GRH Isogeny

Which is hardest? Easiest? 2-IsogenyPath EndRing trivial [Page, W. – Eurocrypt 2024] GRH lsogeny OneEnd

Which is hardest? Easiest? 2-IsogenyPath EndRing trivial [Page, W. – Eurocrypt 2024] GRH Isogeny ?? OneEnd

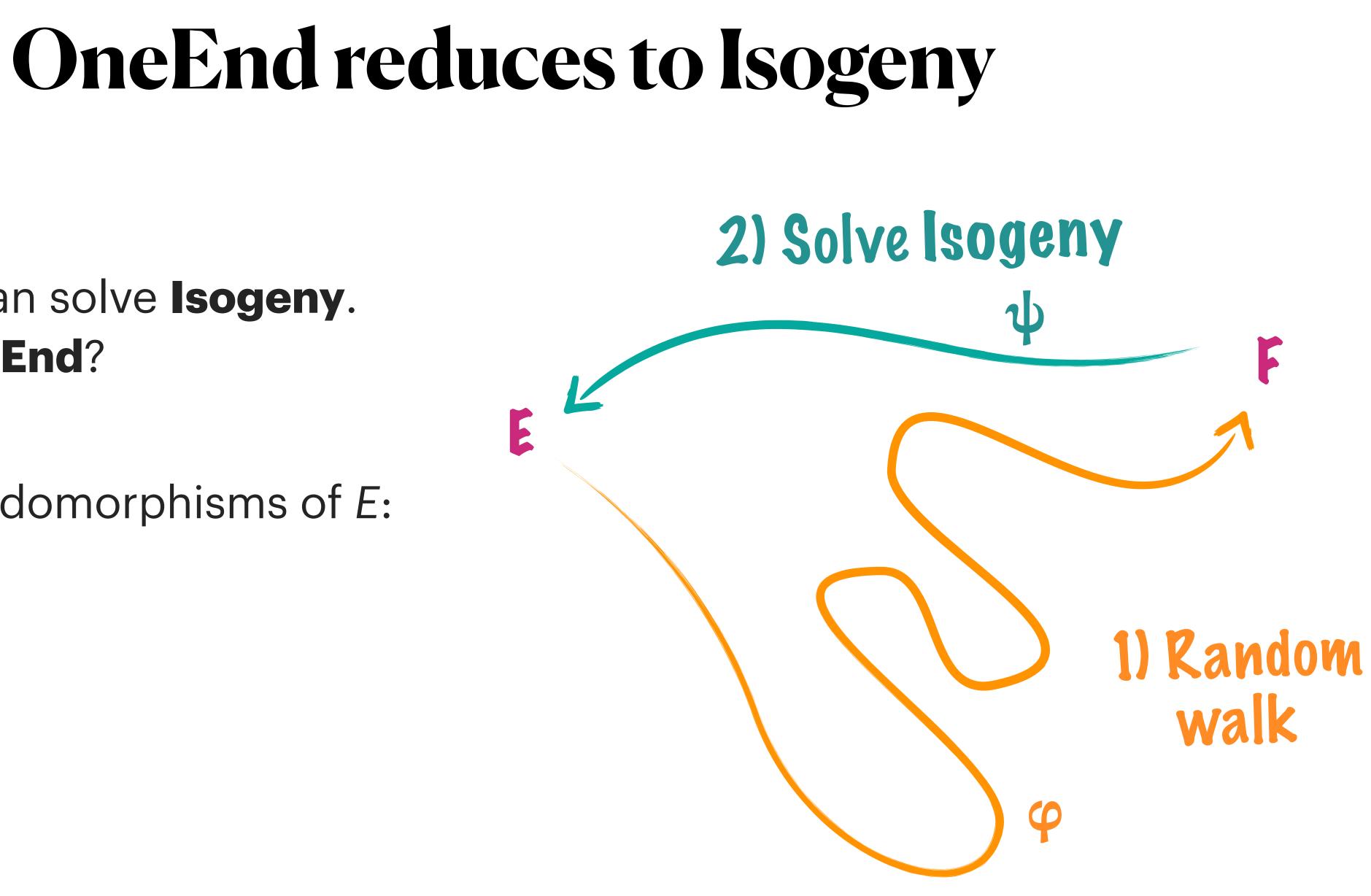
Suppose we can solve **Isogeny**. Can solve **OneEnd**?

Suppose we can solve **Isogeny**. Can solve **OneEnd**?

Suppose we can solve **Isogeny**. Can solve **OneEnd**?

Suppose we can solve **Isogeny**. Can solve **OneEnd**?

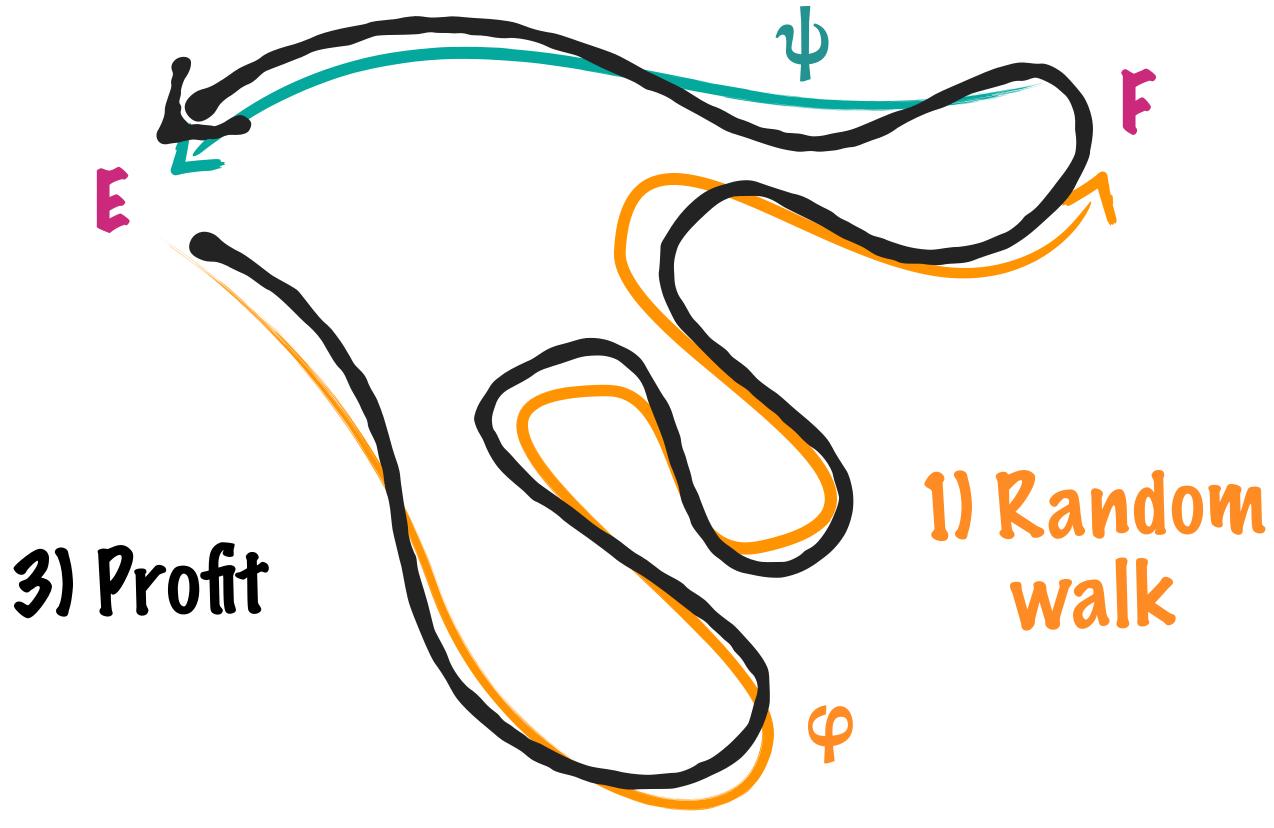
Suppose we can solve **Isogeny**. Can solve **OneEnd**?



Suppose we can solve **Isogeny**. Can solve **OneEnd**?

How to find endomorphisms of *E*:

2) Solve Isogeny

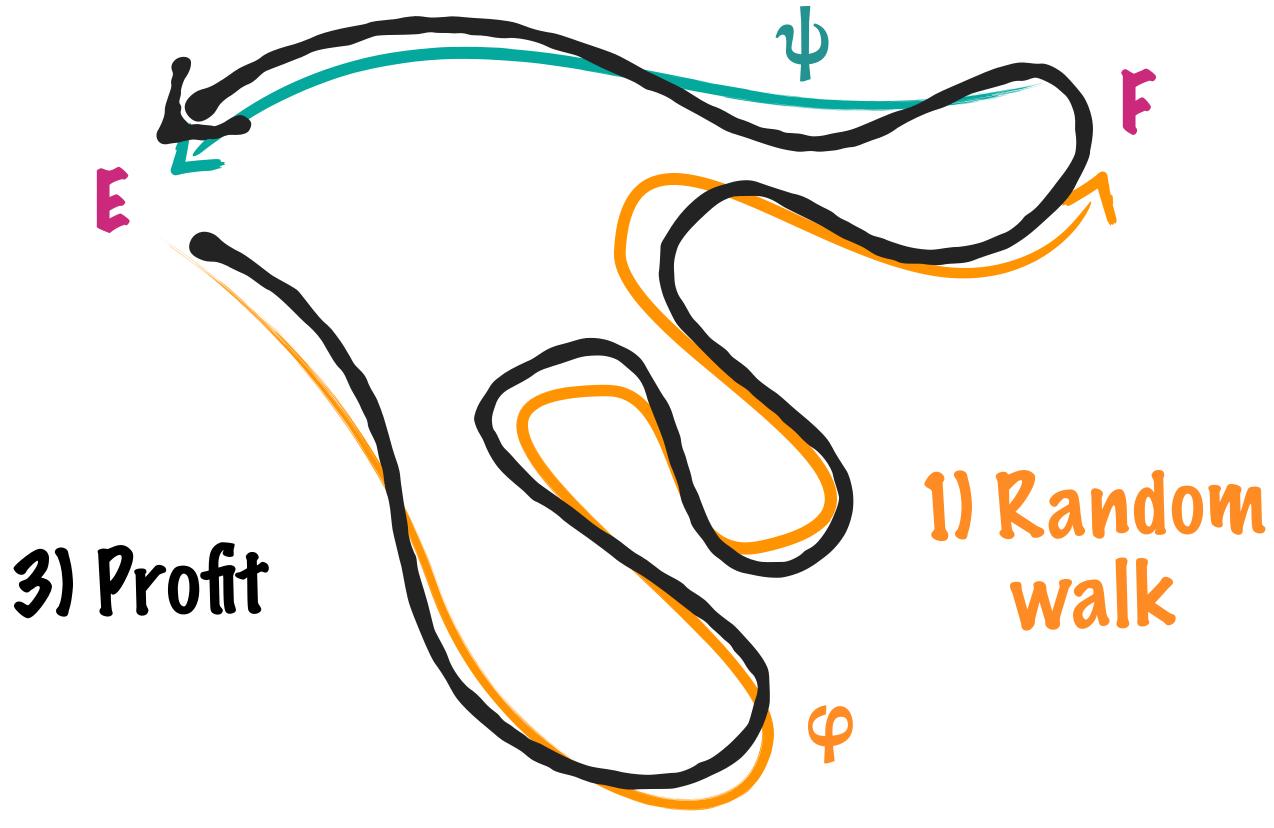


Suppose we can solve **Isogeny**. Can solve **OneEnd**?

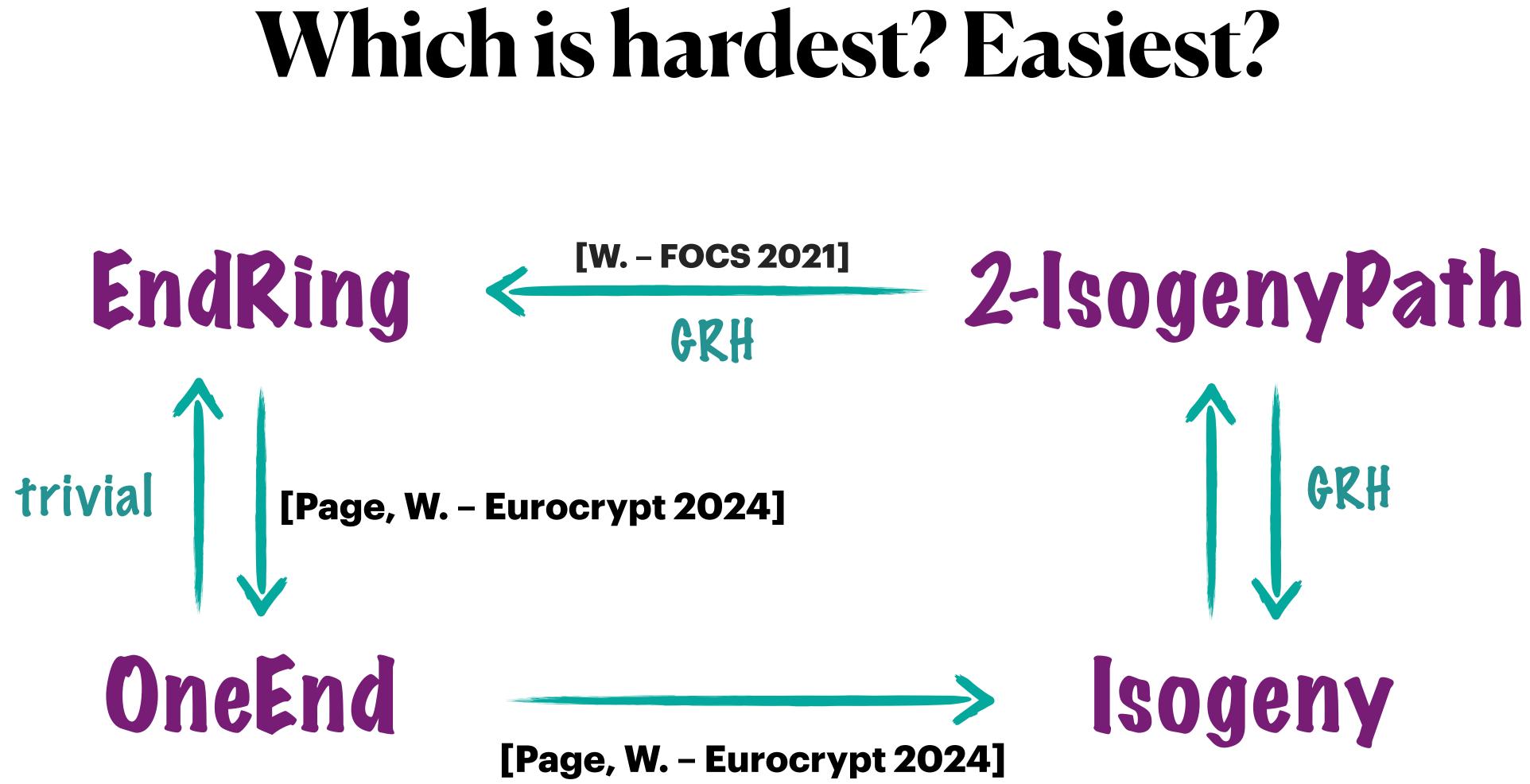
How to find endomorphisms of *E*:

• If φ is long enough $\psi \circ \varphi \notin \mathbb{Z}$

2) Solve Isogeny



Earlier heuristic reductions: [Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018] Recent unconditional reductions: [Herlédan Le Merdy, W. – IACR eprint 2025]



Earlier heuristic reductions: [Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018] Recent unconditional reductions: [Herlédan Le Merdy, W. – IACR eprint 2025]

Supersingular curves \mathbf{E} over \mathbb{F}_{p^2} (up to isomorphism)

Quaternion World

Maximal orders \mathcal{O} in $B_{\rho,\infty}$ $\mathcal{O} \simeq \text{End}(E)$ (up to isomorphism)

Supersingular curves \mathbf{E} over \mathbb{F}_{p^2} (up to isomorphism)

Isogenies $\varphi : E \to E'$

Quaternion World

Maximal orders \mathcal{O} in $B_{p,\infty}$ $\mathcal{O} \simeq \text{End}(E)$ (up to isomorphism)

 $(\mathcal{O},\mathcal{O}')$ -ideals I, $\mathcal{O} \simeq \mathbf{End}(E)$ and $\mathcal{O}' \simeq \mathbf{End}(E')$

Supersingular curves \mathbf{E} over \mathbb{F}_{p^2} (up to isomorphism)

Isogenies $\varphi : E \to E'$

Isogeny: Given E and E', find φ : E \rightarrow E'

Quaternion World

Maximal orders \mathcal{O} in $B_{p,\infty}$ $\mathcal{O} \simeq \text{End}(E)$ (up to isomorphism)

 $(\mathcal{O},\mathcal{O}')$ -ideals I, $\mathcal{O} \simeq \mathbf{End}(E)$ and $\mathcal{O}' \simeq \mathbf{End}(E')$

Supersingular curves \mathbf{E} over \mathbb{F}_{p^2} (up to isomorphism)

Isogenies $\varphi : E \to E'$

Isogeny: Given E and E', find φ : E \rightarrow E'

Quaternion World

Maximal orders \mathcal{O} in $B_{p,\infty}$ $\mathcal{O} \simeq \text{End}(E)$ (up to isomorphism)

(𝔅,𝔅))-ideals *I*, 𝔅 = End(𝔅) and 𝔅' ≃ End(𝔅')

Connecting ideal: Given O and O', find an (O,O')-ideal I

Supersingular curves \mathbf{E} over \mathbb{F}_{p^2} (up to isomorphism)

Isogenies $\varphi : E \to E'$

HARD Isogeny: Given E and E', find φ : E \rightarrow E'

Quaternion World

Maximal orders \mathcal{O} in $B_{p,\infty}$ $\mathcal{O} \simeq \text{End}(E)$ (up to isomorphism)

(𝔅,𝔅))-ideals I, 𝔅 = End(𝔅) and 𝔅' ≃ End(𝔅')

Connecting ideal: Given O and O', find an (O,O')-ideal I

Supersingular curves \mathbf{E} over \mathbb{F}_{p^2} (up to isomorphism)

Isogenies $\varphi : E \to E'$

HARD EndRing Isogeny:

Given E and E', find φ : E \longrightarrow E'

Quaternion World

Maximal orders \mathcal{O} in $B_{p,\infty}$ $\mathcal{O} \simeq \text{End}(E)$ (up to isomorphism)

 $(\mathcal{O},\mathcal{O}')$ -ideals I, $\mathcal{O} \simeq \mathbf{End}(E)$ and $\mathcal{O}' \simeq \mathbf{End}(E')$

Connecting ideal: Given O and O', find an (O,O')-ideal I

Supersingular curves \mathbf{E} over \mathbb{F}_{p^2} (up to isomorphism)

Isogenies $\varphi : E \to E'$

HARD Isogeny: KLPT, Clapoti... Given E and E', find $\varphi : \mathbf{E} \longrightarrow \mathbf{E}'$

Quaternion World

Maximal orders \mathcal{O} in $B_{\mathcal{D},\infty}$ $\mathcal{O} \simeq \mathbf{End}(\mathbf{E})$ (up to isomorphism)

$(\mathcal{O},\mathcal{O}')$ -ideals I, $\mathcal{O} \simeq \text{End}(E)$ and $\mathcal{O}' \simeq \text{End}(E')$

Connecting ideal: Given O and O', find

an (O, O')-ideal I

EndRing \ Isogeny

EndRing \ Isogeny

[Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018] Supersingular isogeny graphs and endomorphism rings: Reductions and solutions.

[W. – FOCS 2021] The supersingular isogeny path and endomorphism ring problems are equivalent.

EndKing \ Isogeny

End(-) is a GPS that allows you to find your way between supersingular curves: • given $End(E_1)$ and $End(E_2)$, one can find an isogeny $E_1 \rightarrow E_2$ in poly. time

[Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018] Supersingular isogeny graphs and endomorphism rings: Reductions and solutions.

[W. – FOCS 2021] The supersingular isogeny path and endomorphism ring problems are equivalent.

EndKing \(Logeny)

End(-) is a GPS that allows you to find your way between supersingular curves: • given $End(E_1)$ and $End(E_2)$, one can find an isogeny $E_1 \rightarrow E_2$ in poly. time

You can update the GPS coordinates as you travel through isogenies:

• given End(E_1), and a (smooth) isogeny $E_1 \rightarrow E_2$, one can find End(E_2) in poly. time

[Eisenträger, Hallgren, Lauter, Morrison, Petit – Eurocrypt 2018] Supersingular isogeny graphs and endomorphism rings: Reductions and solutions.

[W. – FOCS 2021] The supersingular isogeny path and endomorphism ring problems are equivalent.

EndKing \(Logeny)

End(-) is a GPS that allows you to find your way between supersingular curves: • given $End(E_1)$ and $End(E_2)$, one can find an isogeny $E_1 \rightarrow E_2$ in poly. time

You can update the GPS coordinates as you travel through isogenies:

• given $End(E_1)$, and a (smooth) isogeny $E_1 \rightarrow E_2$, one can find $End(E_2)$ in poly. time

For E_1 , E_2 supersingular, Hom(E_1 , E_2) is a lattice of rank 4

EndRing \ Isogeny

• given End(E_1) and End(E_2), one can find an isogeny $E_1 \rightarrow E_2$ in poly. timea basis of $Hom(E_1, E_2)$

You can update the GPS coordinates as you travel through isogenies:

• given End(E_1), and a (smooth) isogeny $E_1 \rightarrow E_2$, one can find End(E_2) in poly. time

For E_1 , E_2 supersingular, Hom(E_1 , E_2) is a lattice of rank 4

End(-) is a GPS that allows you to find your way between supersingular curves:

EndRing \ Isogeny

• given End(E_1) and End(E_2), one can find an isogeny $E_1 \rightarrow E_2$ in poly. timea basis of $Hom(E_1, E_2)$

You can update the GPS coordinates as you travel through isogenies:

• given End(E_1), and a (smooth) isogeny $E_1 \rightarrow E_2$, one can find End(E_2) in poly. time

For E_1 , E_2 supersingular, Hom(E_1 , E_2) is a lattice of rank 4

Computing End(−) ⇔ Computing Hom(−, −)

End(-) is a GPS that allows you to find your way between supersingular curves:

Key generation Generating a curve with its endomorphism ring

Picture by Beppe Rijs

- **Public key**: a supersingular curve *E*_{pk}
- Secret key: a basis of End(E_{pk})

- **Public key**: a supersingular curve E_{pk}
- Secret key: a basis of End(E_{pk})

How to generate a random E_{pk} together with End(E_{pk})?

- **Public key**: a supersingular curve E_{pk}
- Secret key: a basis of End(E_{pk})

How to generate a random E_{pk} together with End(E_{pk})? How to generate even a single supersingular curve?

A special supersingular curve

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Two non-trivial endomorphisms:

- $\iota: E_0 \to E_0: (x, y) \mapsto (-x, \alpha y)$
- $\pi: E_0 \rightarrow E_0: (x, y) \mapsto (x^p, y^p)$

- **Consider** $E_0: y^2 = x^3 + x$

 $l^2 = [-11]$ $l\pi = -\pi l$

 $\mathbf{End}(\mathbf{E_0}) = \mathbb{Z} \oplus \mathbb{Z} \iota \oplus \mathbb{Z} \frac{\iota + \pi}{2} \oplus \mathbb{Z} \frac{1 + \iota \pi}{2}$

A special supersingular curve

Example: $p \equiv 3 \pmod{4}$, so $\mathbb{F}_{p^2} = \mathbb{F}_p(\alpha)$ where $\alpha^2 = -1$, and

Two non-trivial endomorphisms:

- $\iota: E_0 \to E_0: (x, y) \mapsto (-x, \alpha y)$
- $\pi: E_0 \rightarrow E_0: (x, y) \mapsto (x^p, y^p)$

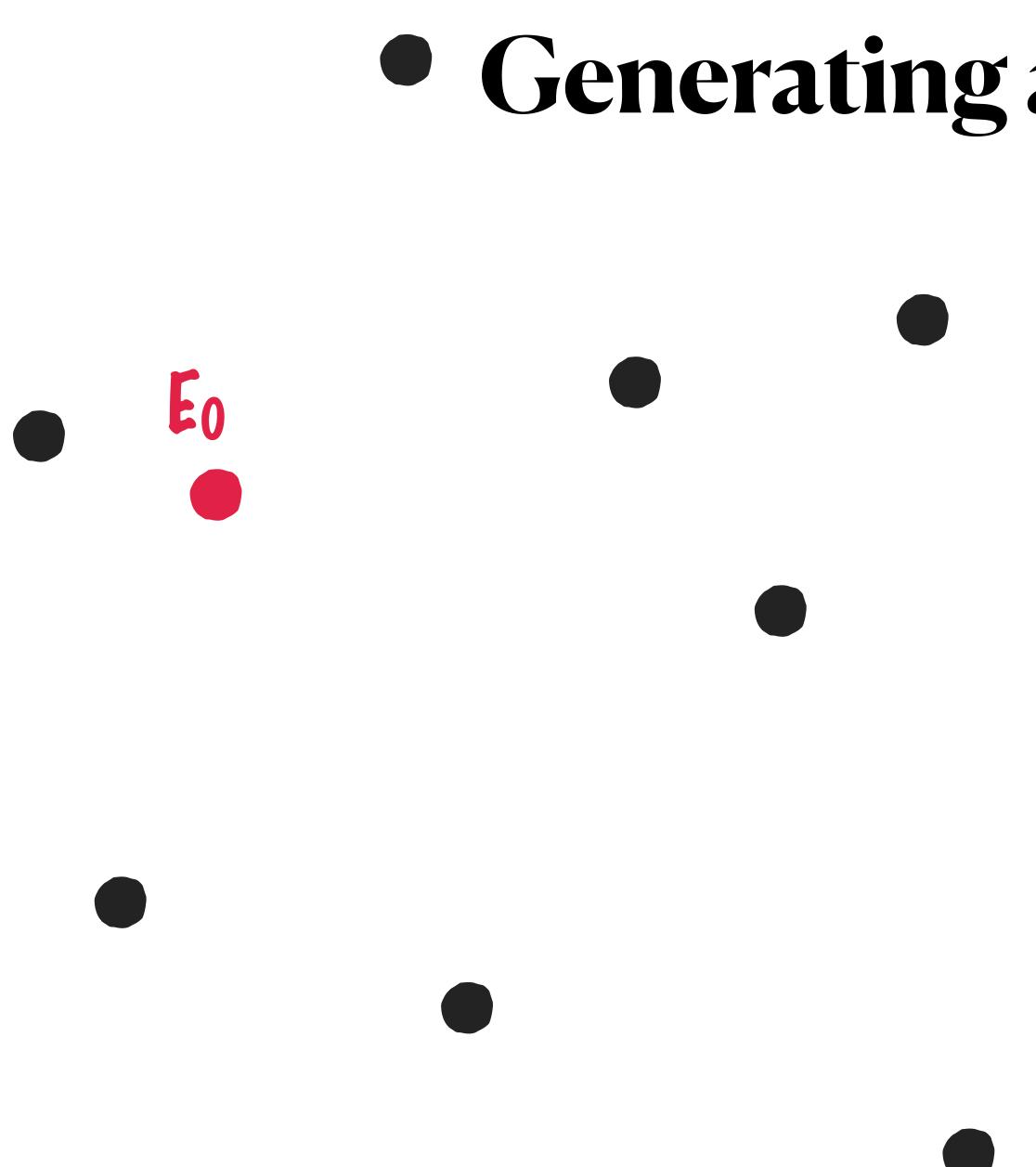
$\mathsf{End}(\mathbf{E_0}) = \mathbb{Z} \oplus \mathbb{Z}$

- **Consider** $E_0: y^2 = x^3 + x$

 $l^2 = [-11]$ $l\pi = -\pi l$

$$\mathbb{Z}\iota \oplus \mathbb{Z} \quad \frac{\iota + \pi}{2} \oplus \mathbb{Z} \quad \frac{1 + \iota \pi}{2}$$

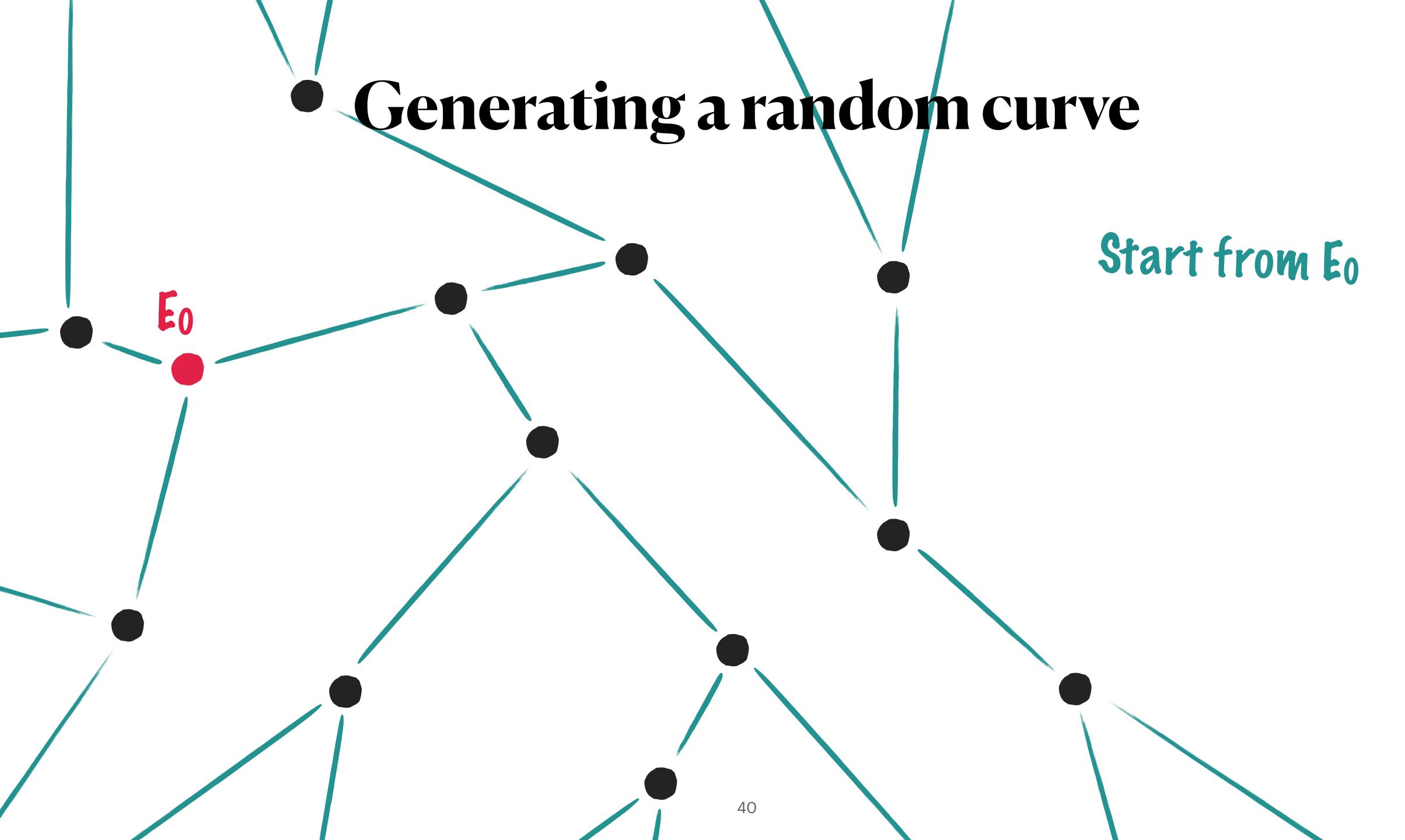
 E_0 and $E_{nd}(E_0)$ is our reference

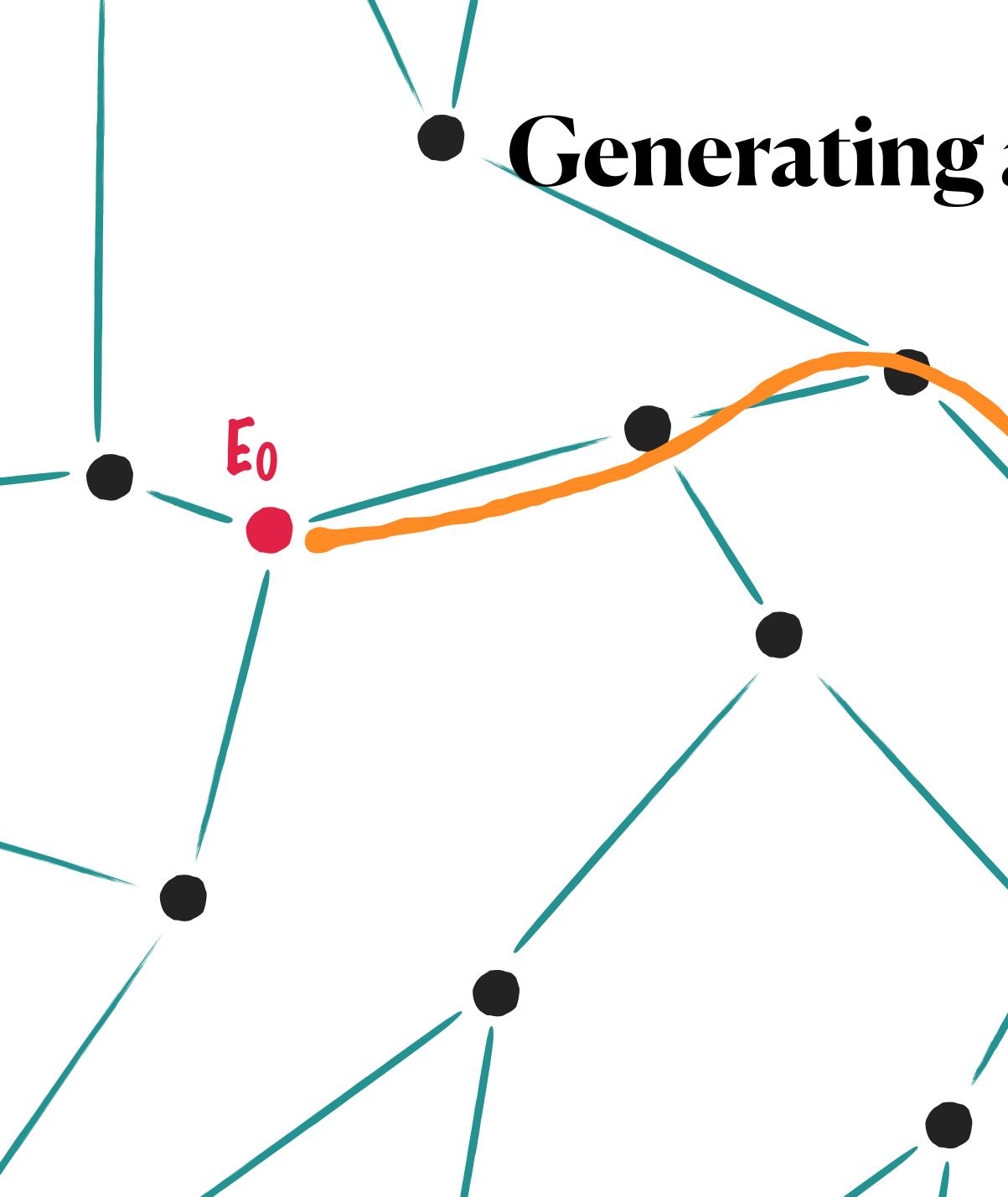


• Generating a random curve

Start from Eo

40

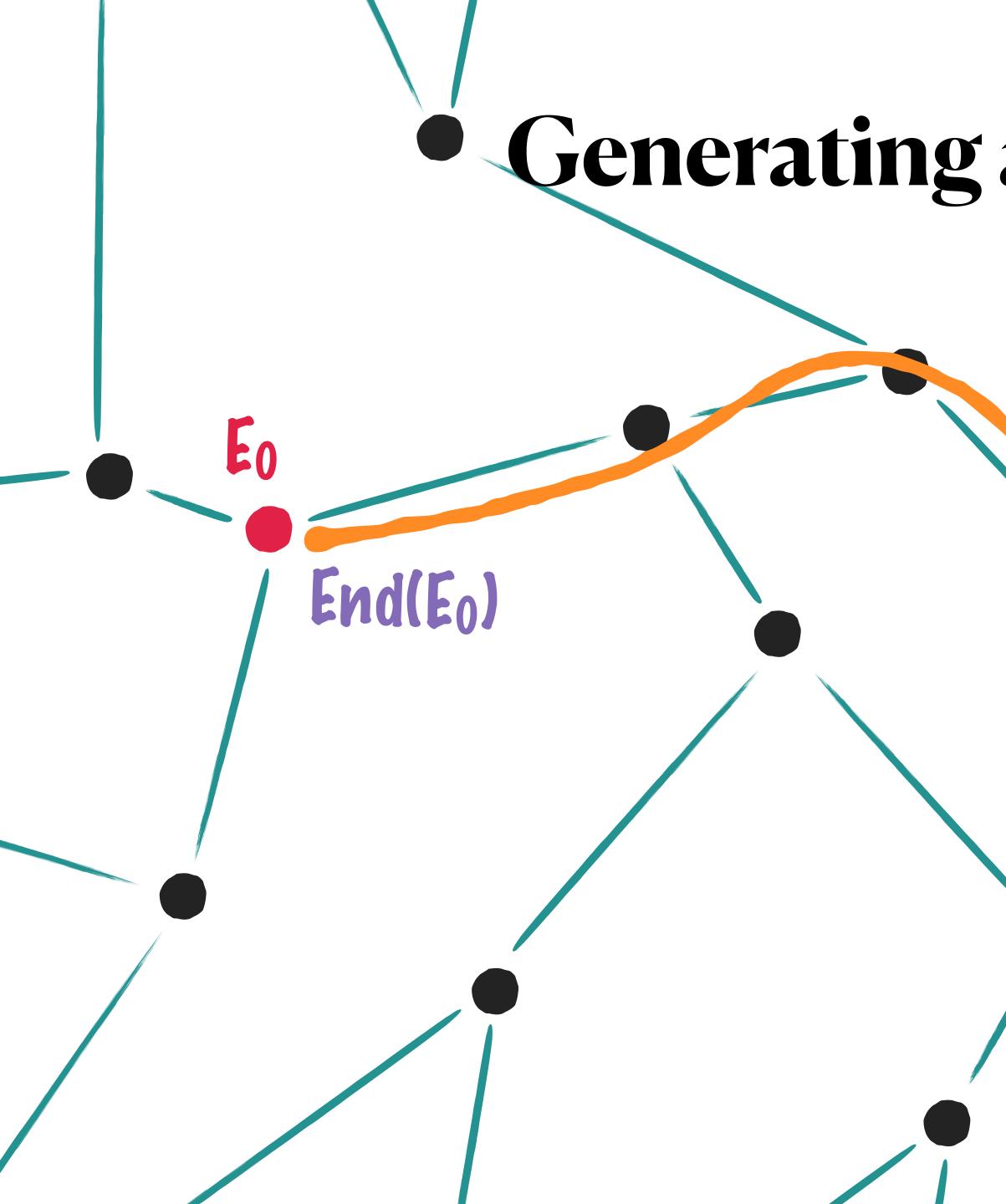




Generating a random curve

Start from Eo Walk randomly

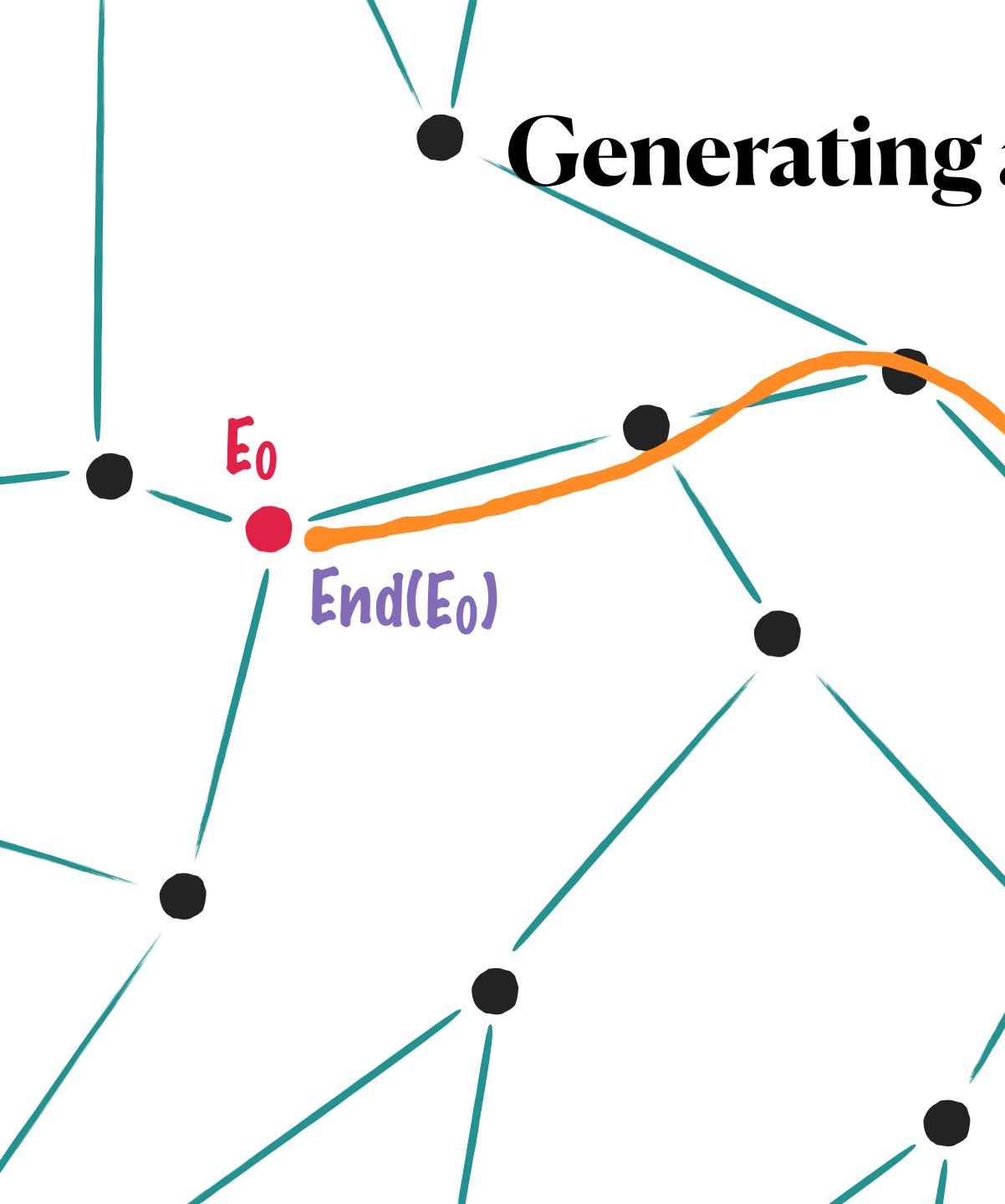
Ł



Generating a random curve

Start from Eo Walk randomly

E



Generating a random curve

End(E)

Start from E₀ Walk randomly Use knowledge of the path and of End(E0) to compute End(E)

40

One can generate (*E*, End(*E*)) with *E* uniform