

SQIsign past, present and future

Luca De Feo IBM Research Zürich

April 28, 2025 The SQIparty, Lleida, Spain

What crypto from isogenies?

	Key exchange / Encryption	Identification / Signature	Other	
Quadratic	Couveignes–Rostovtsev– Stolbunov CSIDH SCALLOP	SeaSign CSI-FiSh PEGASIS ¹	Threshold ² PAKE 	
Quaternionic	_	SQIsign SIDH-like signatures	Ring signatures Adaptor signatures ³	
Ad hoc	<mark>SIDH †</mark> SIDH fixes FESTA	SIDH-like signatures	Time-release crypto 	
¹ See P. Dartois' talk on Wednesday. ² See G. Borin's talk on Tuesday. ³ See I. Radulescu's talk on Tuesday.				
Luca De Feo (IBM Research Zürich)		SQIsign	April 28, 2025, The SQIparty	2/28

Zero-Knowledge Proofs of Knowledge

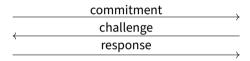
Prover

NP statement, witness

Verifier

NP statement

"OK, I believe you!"


Zero-Knowledge Proofs of Knowledge

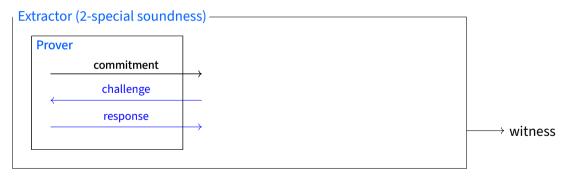
Prover

Verifier

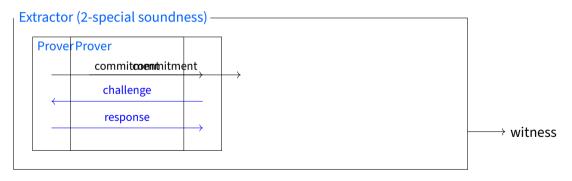
NP statement, witness

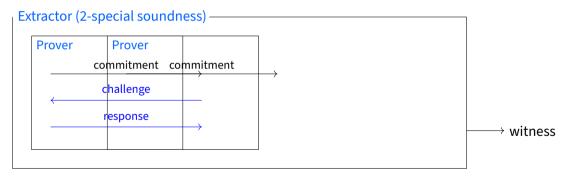
NP statement

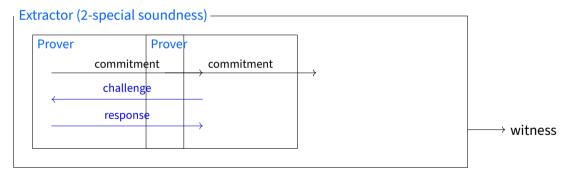
 Σ -protocols

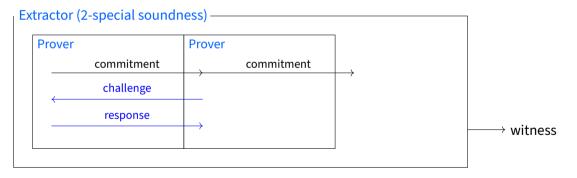

"OK, I believe you!"

Minimal definition: A prover with no knowledge of the secret only convinces the verifier with negligible probability.

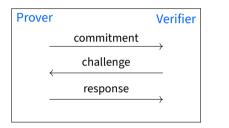

Minimal definition: A prover with no knowledge of the secret only convinces the verifier with negligible probability.

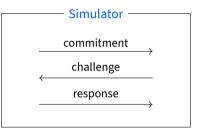

Minimal definition: A prover with no knowledge of the secret only convinces the verifier with negligible probability.


Minimal definition: A prover with no knowledge of the secret only convinces the verifier with negligible probability.


Minimal definition: A prover with no knowledge of the secret only convinces the verifier with negligible probability.


Minimal definition: A prover with no knowledge of the secret only convinces the verifier with negligible probability.


Minimal definition: A prover with no knowledge of the secret only convinces the verifier with negligible probability.



Minimal definition: A prover with no knowledge of the secret only convinces the verifier with negligible probability.

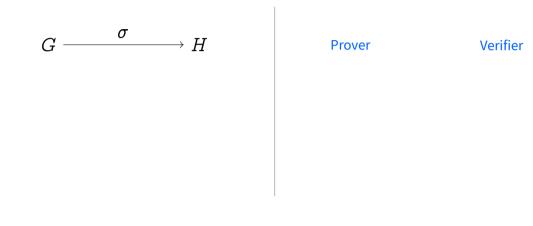
Zero-Knowledge: "You learned nothing about the secret"

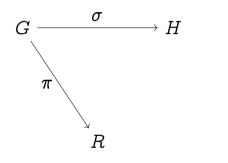
How to Explain Zero-Knowledge Protocols to Your Children

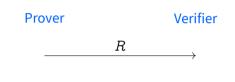
OUISOUATER Jean-Jacoues⁽¹⁾, Myriam, Muriel, Michaël GUILLOU Louis⁽²⁾, Marie Annick, Gaïd, Anna, Gwenolé, Soazig

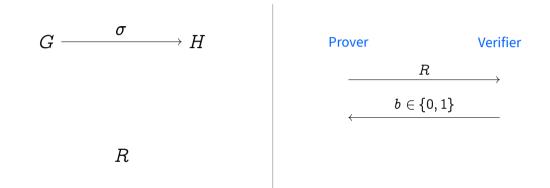
in collaboration with Tom BERSON(3) for the English version

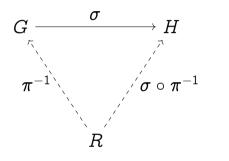
(1) Philips Research Laboratory, Avenue Van Becelaere, 2, B-1170 Brussels, Belgium. ⁽²⁾ CCETT/EPT, BP 59, F-35512 Cesson Sévigné, France, ⁽³⁾ Anagram Laboratories, P.O. Box 791, Palo Alto CA 94301, USA.

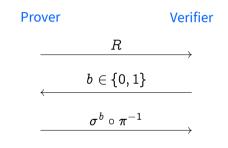

The Summe Cave of Alisbuda

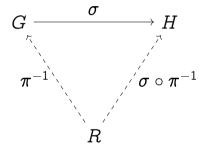

Know, oh my children, that very long ago, in the Eastern city of Baghdad, there lived an old man named Ali Baba. Every day Ali Baba would go to the bazaar to buy or sell things. This is a story which is partly about Ali Baba, and partly also about a cave, a strange cave whose secret and wonder exist to this day. But I get ahead of myself ...


One day in the Baghdad bazaar a thief grabbed a purse from Ali Baba who right away started to run after him. The thief fled into a cave whose entryway forked into two dark winding passages: one to the left and the other to the right (The Entry of the Cave).


Ali Baba did not see which passage the thief ran into. Ali Baba had to choose which way to go, and he decided to go to the left. The left-hand passage ended in a dead end. Ali Baba searched all the way from the fork to the dead end, but he did not find the thief. Ali Baha said to himself that the thief was perhaps in the other passage. So he searched the right-hand passage, which also came to a dead end. But again he did not find the thief. "This cave is pretty strange." said Ali Baba to himself. "Where has my thief gone?"







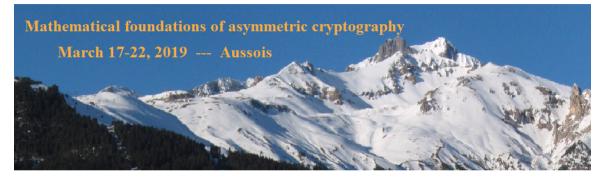
The "Group Action" point of view

- "Public" set: $G, H, R \in S$
- "Private" group: $\pi, \sigma \in \mathcal{G}$
- Group action: *G S*

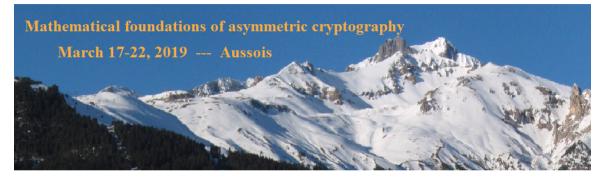
More on group actions

Protocols:

- Giacomo Borin
 - Threshold signatures from different group actions


Instantiations:

- Marc Houben
 - A Montgomery-ladder for isogenies
- Pierrick Dartois
 - PEGASIS: Practical Effective Class Group Action using 4-Dimensional Isogenies
- Eli Orvis
 - Generalized class group actions via class field theory


The birth of SQIsign

The birth of SQIsign

The birth of SQIsign

the Short Quaternion and Isogeny Signature

De Feo, Kohel, Leroux, Petit, Wesolowski – Asiacrypt 2020

Endomorphism ring

Isogeny

$\operatorname{Hom}(E,\overline{E'})$

Degree

Maximal order

Ideal

Ideal class

Norm

Luca De Feo (IBM Research Zürich)

April 28, 2025, The SQIparty 11/28

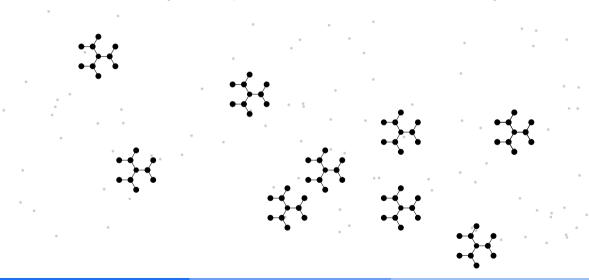
More on correspondences

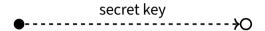
Algorithms for the Deuring correspondence:

- Jordi Pujolàs
 - On prime degree twisting endomorphisms of supersingular elliptic curves

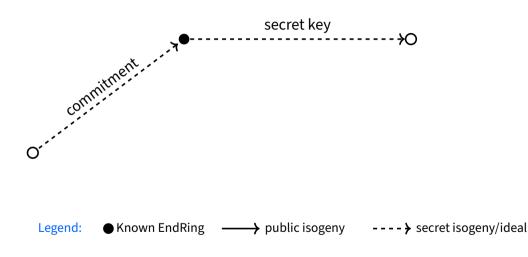
Higher dimensions:

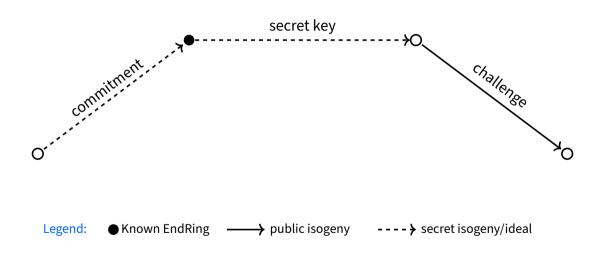
- Enric Florit
 - Quaternionic multiplication and abelian fourfolds
- Péter Kutas
 - Biquaternion cryptography

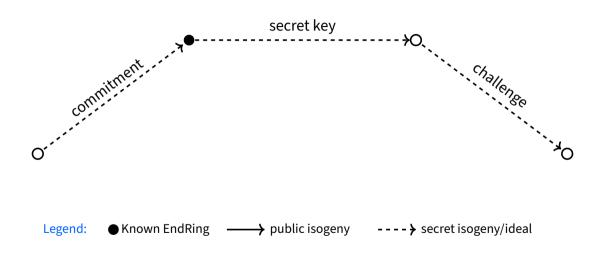

Other kinds:

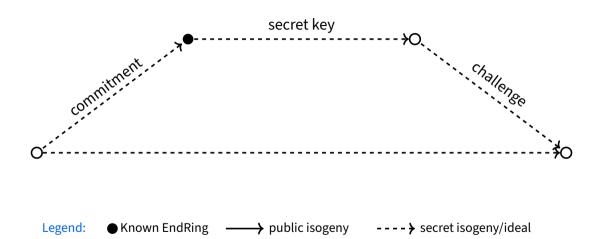

- Harun Kir
 - Exploring Kani's Research
- Chloe Martindale
 - Hidden geometry in supersingular isogeny graphs

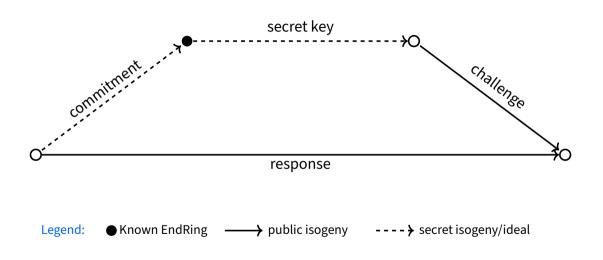
Propagating EndRing info

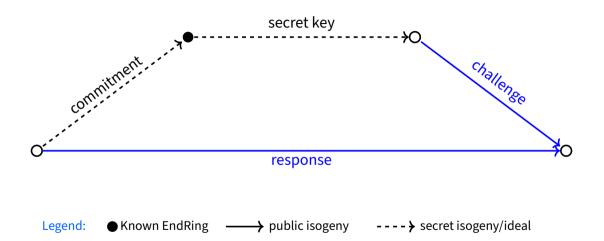

Propagating EndRing info

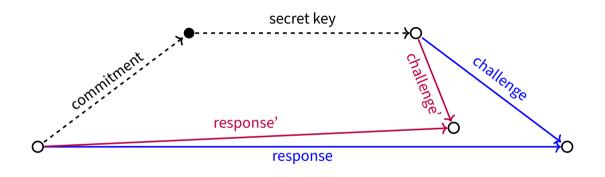

Propagating EndRing info



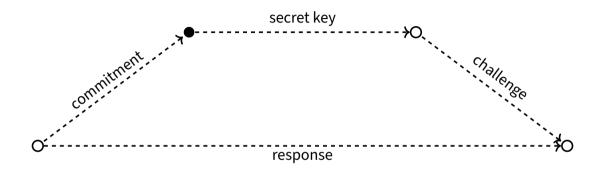



Legend: ● Known EndRing → public isogeny ---- > secret isogeny/ideal





$\text{2-special soudness} \rightarrow \text{OneEnd}$



$\text{2-special soudness} \rightarrow \text{OneEnd}$

Legend: ●Known EndRing → public isogeny ---- > secret isogeny/ideal

What response?

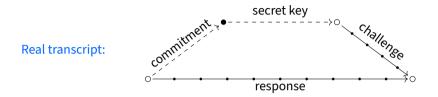
SQIsigning like it's the 80s

KLPT: translating quaternion ideals to smooth degree isogenies

Kohel, Lauter, Petit, Tignol (2014)

Input: a left ideal class of a special maximal order

Output: a unique representative of norm a power of 2

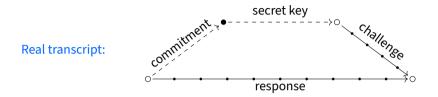

De Feo, Kohel, Leroux, Longa, Petit, Wesolowski (2020,2022)

Input: a left ideal class of an arbitrary maximal order Output: a sort of random looking representative of norm a power of 2

Performance of SQIsign v1 (June 2023)

Bytes		Mcycles			
Public Key	Signature	Keygen	Sign	Verify	Security
64	177	3,728	5,779	108	NIST-1
96	263	23,734	43,760	654	NIST-3
128	335	91,049	158,544	2,177	NIST-5

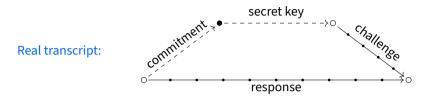
Zero-Knowledge



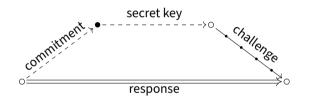

.

Simulated transcript:

0


Zero-Knowledge

Zero-Knowledge


Simulated transcript:

Modern SQIsigning

5

VOZKA

SQIsignHD (Dartois, Leroux, Robert, Wesolowski 2023)

- Response encoded by interpolation points,
- Evaluate using 4D isogeny formulas,
- ++ Fast signing,
- ++ Shorter responses,
- -- Slow verification.

SQIsign2D (Basso, Dartois, De Feo, Leroux, Maino, Nakagawa, Onuki, Pope, Robert, Wesolowski 2023)

- Move from 4D to 2D isogeny representations.
- ++ Fast signing,
- ++ Shorter responses,
- ++ Fast verification.

More on higher-dimensional isogenies

Translating ideals to isogenies

- Jonathan Komada Eriksen
 - Translating ideals to isogenies

Theta structures and isogenies:

- Maria Corte-Real Santos
 - Computing two-dimensional isogenies for SQIsign
- Max Duparc
 - A Combinatorial Perspective on Theta Structures
- Antoine Dequay
 - Algorithms for moduli space of abelian varieties with level structure

More variants of SQIsign:

- Hiroshi Onuki
 - SQIsign2DPush

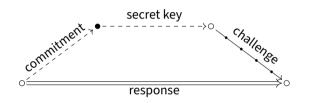
Other topics

Better pairing computations:

- Alessandro Sferlazza
 - Montgomery ladders already compute pairings

Abstracting SQIsign for cryptography:

- Ilinca Radulescu
 - Cryptographic Categories


Performance of SQIsign v2 (February 2025)

Bytes		►			
Public Key	Signature	Keygen	Sign	Verify	Security
66	148	84	203	11	NIST-1
98	222	228	549	31	NIST-3
130	294	403	1021	62	NIST-5

More on performance and platform-specific implementations:


- Benjamin Smith
 - Post-quantum signatures in practice: securing IoT software updates
- Décio Gazzoni Filho
 - Speeding up SQIsign verification on the ARM Cortex-M4

Zero-knowledge

• HD response encoded by interpolation points

Zero-knowledge

- HD response encoded by interpolation points
- How to evaluate large degree isogenies without EndRing?
- *Ad-hoc* fix: give a magic box to simulator.

Zero-knowledge

- HD response encoded by interpolation points
- How to evaluate large degree isogenies without EndRing?
- *Ad-hoc* fix: give a magic box to simulator.
- Recent progress: Aardal, Basso, De Feo, Patranabis, Wesolowski (eprint 2025/379)

The future

Todos:

- Systematic analysis of variants
- Hardware accelerations

Challenges:

- Better security proof
- Constant time algorithms
- SQIsign needs stability

Looks tough:

 Meaningfully faster signatures

One may always dream:

- Meaningfully faster verification
- Better 1D SQIsign