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. Motivation



A new tool

Aterpolation

Given coprime integers N < N’ and four points P, P,, Q,, O, such that
(P, P,) = E|[N'] and (Q,, Q,) = E,[N’] with N’ a B-powersmooth integer.

One can efficiently check existence and compute the isogeny of degree NV
¢ : E;, = E, such that ¢(P,) = Q, and ¢(P,) = O,.

Damien Robert. On the efficient representation of isogenies (2024).
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Given coprime integers N < N’ and four points P, P,, Q,, O, such that
(P, P,) = E|[N'] and (Q,, Q,) = E,[N’] with N’ a B-powersmooth integer.

One can efficiently check existence and compute the isogeny of degree NV

¢ : E;, = E, such that ¢(P,) = Q, and ¢(P,) = O,.

& Requires computing dimension > 2 isogenies of degree £ between
products of elliptic curves.

Damien Robert. On the efficient representation of isogenies (2024).
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 New variants of SQIsign exploit this new
tool.

* For a sufficiently nice set-up, we can
restrict to computing 2D isogenies.

 [wo-dimensional isogenies are used in
key generation, signing and verification!
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Our goal

Inputs

Cryptographic sized p Outputs

Codomain £; X E,
Image points ®(P,), ..., D(P,)

Domain £, X E, defined over [I_:p

Degree 2¢

R,S € E, X E,[2"] generating kernel
Points Py, ..., P, € £, X £,
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Moving to higher dimension

Elliptic Curves
E:y"=x+Ax+B

N
S

R=P&® U
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Elliptic Curves Genus-2 Hyperelliptic Curve
E:y"=x+Ax+B C: y*=f(x), deg(f)=50r6

V

The Jacobian is the group
attached to C.

Ingenus 1, J- = C.
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There are two types:
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Moving to higher dimension

We now consider superspecial abelian surfaces (A, 1).
There are two types:

- Products of elliptic curves £, X E,
- Jacobians J - of genus 2 hyperelliptic curves C
Definition

An isogeny @ : A, - A, between PPAS is a surjective group homomorphism with
finite kernel.

We say it is a (polarised) £-isogeny if:

. ker(®) = (R, S) where R, S € A[£] and ¢/(R,S) = 1
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Types of iIsogenies

Gluing Generic Splitting
EIXE2_>JC Jl_)JZ JC_)EIXEZ

splitting 2-isogeny

EIXE2—>J1 —> ... —)Jk—>E3XE4



Types of iIsogenies

Gluing Generic Splitting
EIXE2_>JC Jl_)JZ JC_)EIXEZ

[ et’s focus on this for now
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Motivation: the Kummer line

Models of Elliptic Curves

Short Weierstrass
E:y*=x’+Ax+B

Montgomery Form Montgomery Kummer Line

E: y> =x(x —a)(x — 1/a)

E/{+1) & P!

{u:mﬁp:&
n:P—
(x: Dif P=(x,y)



Many Kummer Line models

The Montgomery Model (X : Z) The Theta Model (6, : 0,)
O=1:0),T =@0©:1), O=(a:b), T =(—a:b),
Ihn=(@:b), T;,=(b:a). Ih=0B:a),T;,=(-b:a).
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Kummer Surfaces

Models of Hyperelliptic Curves

Genus-2 Hyperelliptic Curve RR—— Cassels—Flynn
C- yz = f(x), deg(f)=5o0r6 7 de = Jol{E1) & P Kummer surfaces

Rosenhain Form
Cpw 2 = x(x = D(x = Dx = u)(x = 1)

Cassels and Flynn. Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2 (1996).



Kummer Surfaces

Models of Hyperelliptic Curves

Genus-2 Hyperelliptic Curve RR—— Cassels—Flynn
C- yz = f(x), deg(f)=5o0r6 7 de = Jol{E1) & P Kummer surfaces

Rosenhain Form Kummer surfaces

arising from theta
functions of level 2

Crup: V2= = DX =D& — )X = 1) 5idem sl o B

Gaudry. Fast genus 2 arithmetic based on Theta functions (2007).
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The Kummer surface can be embedded into [P~ with theta coordinates. The
system of theta coordinates (of level 2) is fully determined by the theta null point

O=(@:b:c:d).

Two-torsion points
(a:b:c:d)(a:—b:c:—d) (a:b:—c:—d) (a—:b:—c:d)
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Symmetry in the 2-torsion gives us fast doubling and 2-isogenies!



The theta model

3

The Kummer surface can be embedded into [P~ with theta coordinates. The
system of theta coordinates (of level 2) is fully determined by the theta null point

O=(@:b:c:d).

Two-torsion points
(a:b:c:d)(a:—b:c:—d) (a:b:—c:—d) (a—:b:—c:d)
b:a:d:c) (b:—a:d:—c) b:a:—d:—-c) b:—a:—d:c)
(c:d:a:b) (c:—d:a:—-b) (c:d:—a:—b) (c:—d:—a:b)
d:c:b:a) d:—c:b:—a) d:c:—b:—a) d:—c:—b:a)

There are different systems of theta coordinates and appropriate change of
coordinates formulas; we fix a specific choice.
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The theta model: arithmetic

The group law is destroyed by quotienting by (£ 1) but we still have a
pseudo-group law.

Fast arithmetic : built from simple building blocks
H: X, : X : X5: X)X+ X% +X5+X,: X+ -X5-X,: X - X+ X5-X,: X, - X, - X5+ X))
S : (X, :X2:X3:X4)|—>(X12:X22:X32:Xf)
Cy: XX : X5: X)X U : X, Uy : X5 - Uy X, - Uy)



V. Computing Generic
Isogenies

Dartois, Maino, Pope and Robert. An Algorithmic Approach to (2,2)-isogenies in the Theta Model (2024).
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The theta model: iIsogenies

A 2-isogeny J — J'induces an algebraic map between Kummer surfaces.

J J

JH{£1y —2— J/(£1)

“We lose nothing by going down to the Kummers” - Cassels and Flynn



The theta model: iIsogenies

A 2-isogeny J — J'induces an algebraic map between Kummer surfaces.

J J

JH{£1) —2— J/(£1)

“Computing (generic) isogenies between abelian surfaces with theta coordinates of level 2”



The theta model: iIsogenies

Let A, B be abelian surfaces in (a specific choice of) level-2 theta coordinates.

Key Fact:
Let ® : A — B be a2-isogeny where O, = (a : b : c: d). Then

Opr=HoS 1oHoS(0,)



Computing generic isogenies

Algorithm 8.34 GenericCodomain(0,4)

Input: The theta constants 04 := (a : b : ¢ : d) of A.

Output: Dual isogeneous theta null point (o : 8 : v : §), the inverse of the dual isogeneous theta null point
(o=t :B71:~471:671), and the theta null point O on B. /ICase - f3-7v-38 #0.

I: (a2’ 1827 727 52) —Ho S(aa b7 C, d)

a — o

B a®- B

v a? -2

§ — a? .52

B < SquareRoot(f)

v < SquareRoot(7)

d < SquareRoot(9)

a~ !« 2. 62
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(a27b27c27d2) — H(a7ﬁ777 5)
15: Op + (CLQ,bQ,CQ,dQ)
16: return (o, 3,7,0), (a1, 871,71, 671),05 // Total cost: 4S + 10M + 24a + 3Sqrt

[—
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Removing square roots

In analogy with dimension one, torsion points allow us to avoid square roots!

Fun Fact
Let R’, S’ be such that ker(®) = ([4]R’, [4]S"). Then:

HoS(R) = (xa : xp : yy: yo)
HoS(S) = (za : wp : zy : wo)

for some x,y,z, w € [sz .

This tells us we can extract (a : f/ : y : 0) using a few squaring and
multiplications.



Removing square roots

We can do something similar with 4-torsion, but we need 2 square roots.



Evaluating points

We compute images of points in an analogous way.

Let ® : A — B be a2-isogeny where O, = (a : b : ¢ : d). Then the
image of a point P is given by

H o CoHoS(P)

whereC: (x:y:z:w) > (x-al:y- gz ytiw. 67D

K. We have already computed

(oc_1 :,B‘1 : y‘l - 071
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E,XE, =>A — ... > A — E;XE,
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What we’ve done so far

Codomain computation and evaluation

E,XE, =>A — ... > A — E;XE,

Without square roots!

But we need gluings and splittings!



V. Gluing and splitting
Isogenies
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where B = £ X E,
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O, <k, associated with the product
theta structure.




Splitting isogenies

Generic Isogeny
@w:.A—B
where B = £ X E,

Compute isomorphism whose action
on O gives back the theta null point

O, <k, associated with the product
theta structure.

Product Theta Structure

Let B = E X E’ be a product of Montgomery
elliptic curves each with their system of theta
coordinates

6y :0)) and (6 :0))

The product theta coordinates on B are
defined as

(x:y:z:w)=(0,0,:0,0,: 0.0, : 6,0



Splitting isogenies

Generic Isogeny
@w:.A—B
where B = £ X E,

Compute isomorphism whose action
on O gives back the theta null point

O, <k, associated with the product
theta structure.

Recover Montgomery coefficients of
E, E, from Op .




Recall...

The Montgomery Model (X : Z) The Theta Model (6, : 0,)
O=1:0),T =@0©:1), O=(a:b), T =(—a:b),
Ihn=(@:b), T;,=(b:a). Ih=0B:a),T;,=(-b:a).

~_



Splitting isogenies

Generic Isogeny
@w:.A—B
where B = £ X E,

Compute isomorphism whose action
on O gives back the theta null point

O, <k, associated with the product
theta structure.

Recover Montgomery coefficients of
E, E, from Op .

Procedure is similar for points...
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(corresp. to our choice of theta structure)
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Apply change of basis matrix to move points
(P, P,) € E; X E, from Montgomery

coordinates to (non-product) theta coordinates
(corresp. to our choice of theta structure)

Product to Theta Structure

Let £ X E’ be a product of Montgomery
elliptic curves each with product theta
coordinates

(x:y:z:w)=(6,0,:0,0,: 0,0 :0,0)

Then apply a change of basis matrix.



Gluing isogenies

Apply change of basis matrix to move points
(P, P,) € E; X E, from Montgomery

coordinates to (non-product) theta coordinates
(corresp. to our choice of theta structure)

Compute the codomain of the gluing isogeny

(taking into account we always have 6 = 0).




Gluing isogenies

Apply change of basis matrix to move points
(P, P,) € E; X E, from Montgomery

coordinates to (non-product) theta coordinates
(corresp. to our choice of theta structure)

Compute the codomain of the gluing isogeny

(taking into account we always have 6 = 0).

Procedure is similar for evaluating points (P, P,)...
Special (faster) evaluation for points of the form (P;,0) or (0,P,)
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Open Questions

(thanks also to Luciano and Pierrick!)

How can we best treat cases when a splitting (and therefore then a gluing) happens in the middle of the
chain? How can we treat cases where gluing does not happen on the first step?

Can we develop new side channel attacks against these algorithms? For example, by generalising the
patient-zero attack to two dimensions. Can this be used as a side-channel attack against SQlsign?

Two-dimensional isogenies of odd degree? SqrtVelu2D?

Improve gluing! (coming up next...)




Resources (besides the spec)

An Algorithmic Approach to (2,2)- Some notes on algorithms
isogenies in the Theta Model for abelian varieties

Dartois, Maino, Pope and Robert Robert

Isogenies on Kummer Surfaces
Joint with Flynn




