SQIsign2DPush

Kohei Nakagawa¹ and <u>Hiroshi Onuki</u>²

¹NTT Social Informatics Laboratories, ²The University of Tokyo

SQIparty 2025/4/28

Overview

- We propose a new SQIsign variant, SQIsign2DPush.
- Construct a **new algorithm** for the **auxiliary isogeny**.
- Also use DoublePath in SQIsignHD.
- We can reduce the number of (2,2)-isogenies in signing.

This talk manly focuses on how to compute the **auxiliary isogeny**.

Motivation

In the NIST SQIsign,

- Blue isogenies by IdealTolsogeny in SQlsign2D-West.
- Purple isogenies by Vélu's formula.

Motivation

In the NIST SQIsign,

- Blue isogenies by IdealTolsogeny in SQlsign2D-West.
- Purple isogenies by Vélu's formula.

Many (2,2)-isogenies in signing \Rightarrow We want to reduce.

Diagram of SQIsign2DPush

- Blue isogenies by DoublePath in SQIsignHD.
- Purple isogenies by Vélu's formula.
- Red isogeny by Our new algorithm.

Notation

- $p = c \cdot 2^{e_2} \cdot 3^{e_3} 1$ is a prime number $(2^{e_2} > \sqrt{p})$.
- $E, E^{\bullet}, E_{\bullet}, \dots$: supersingular elliptic curves over \mathbb{F}_{p^2}
- $E_0: y^2 = x^3 + x/\mathbb{F}_p$, $j(E_0) = 1728$.
- Identify $\operatorname{End}(E_0)$ with $\mathcal{O}_0 = \mathbb{Z} + \mathbb{Z}\mathbf{i} + \mathbb{Z}\frac{\mathbf{i}+\mathbf{j}}{2} + \mathbb{Z}\frac{1+\mathbf{k}}{2}$.

DoublePath [DLRW 2024]

Input: E_0

Output:

- two random 2^{e_2} -isogenies $E_0 \xrightarrow{\varphi_2} E_2 \xrightarrow{\psi_2} E$,
- the left \mathcal{O}_0 -ideal I_2 corresponding to $\psi_2 \circ \varphi_2$,
- two random 3^{e_3} -isogenies $E_0 \xrightarrow{\varphi_3} E_3 \xrightarrow{\psi_3} E$,
- the left \mathcal{O}_0 -ideal I_3 corresponding to $\psi_3 \circ \varphi_3$.

Note: $p = c \cdot 2^{e_2} \cdot 3^{e_3} - 1$.

Kani's lemma

- Setting -

$$E_1 \xrightarrow{\varphi_1} E_2 \xrightarrow{\varphi_2} E_3$$

$$d_1 \coloneqq \deg \varphi_1 \text{ and } d_2 \coloneqq \deg \varphi_2$$

 $\gcd(d_1, d_2) = 1 \text{ and } d_1 + d_2 = 2^e$

Kani's lemma

- Setting -

$$E_1 \xrightarrow{\varphi_1} E_2 \xrightarrow{\varphi_2} E_3$$

$$d_1 \coloneqq \deg \varphi_1 \text{ and } d_2 \coloneqq \deg \varphi_2$$

 $\gcd(d_1, d_2) = 1 \text{ and } d_1 + d_2 = 2^e$

\exists algorithm s.t.

Input : E_1 , E_3 , d_1 , d_2 , $(\varphi_2 \circ \varphi_1) \upharpoonright_{E_1[2^e]}$

Output : E_2 , φ_1 , $\widehat{\varphi_2}$.

Kani's lemma

- Setting -

$$E_1 \xrightarrow{\varphi_1} E_2 \xrightarrow{\varphi_2} E_3$$
 $d_1 \coloneqq \deg \varphi_1 \text{ and } d_2 \coloneqq \deg \varphi_2$

$$a_1 := \deg \varphi_1$$
 and $a_2 := \deg \varphi_2$ $\gcd(d_1, d_2) = 1$ and $d_1 + d_2 = 2^e$

\exists algorithm s.t.

Input : E_1 , E_3 , d_1 , d_2 , $(\varphi_2 \circ \varphi_1) \upharpoonright_{E_1[2^e]}$

Output : E_2 , φ_1 , $\widehat{\varphi_2}$.

Note:

- ullet Using a $(2^e,2^e)$ -isogeny
- d_1 and d_2 are not necessarily smooth.

Let q be the odd part of $\deg \varphi_{rsp}$.

- $q < 2^{e_2}$.
- $3 \nmid q$ (so that $\widehat{\varphi_{\rm rsp}} \circ \varphi_{\rm chl}$ is cyclic).

We want to compute φ_{aux} of degree $2^e - q$ for some $e \leq e_2$.

We want to compute φ_{aux} of degree $2^e - q$ for some $e \leq e_2$.

We want to compute φ_{aux} of degree $2^e - q$ for some $e \leq e_2$.

 $\bullet \ \ \mathsf{Divide} \ \varphi_{\mathsf{aux}} \ \mathsf{into} \ \varphi_{\mathsf{aux}}^{(3)} \circ \varphi_{\mathsf{aux}}' \ \mathsf{s.t.} \ \deg \varphi_{\mathsf{aux}}^{(3)} = 3^{\bullet} \ \mathsf{and} \ 3 \nmid \deg \varphi_{\mathsf{aux}}' .$

$$E_{\text{aux}} \leftarrow \frac{\varphi_{\text{aux}}^{(3)}}{E_{\text{aux}}} = E_{\text{aux}}' \leftarrow \frac{\varphi_{\text{aux}}'}{E_{\text{com}}}$$

We want to compute φ_{aux} of degree $2^e - q$ for some $e \leq e_2$.

• Divide φ_{aux} into $\varphi_{\mathrm{aux}}^{(3)} \circ \varphi_{\mathrm{aux}}'$ s.t. $\deg \varphi_{\mathrm{aux}}^{(3)} = 3^{\bullet}$ and $3 \nmid \deg \varphi_{\mathrm{aux}}'$.

$$E_{\mathrm{aux}} \leftarrow \frac{\varphi_{\mathrm{aux}}^{(3)}}{E_{\mathrm{aux}}'} = E_{\mathrm{aux}}' \leftarrow \frac{\varphi_{\mathrm{aux}}'}{E_{\mathrm{com}}}$$

• $\varphi_{\text{aux}}^{(3)}$ is computed by Vélu's formula.

We want to compute φ_{aux} of degree $2^e - q$ for some $e \leq e_2$.

• Divide φ_{aux} into $\varphi_{\mathrm{aux}}^{(3)} \circ \varphi_{\mathrm{aux}}'$ s.t. $\deg \varphi_{\mathrm{aux}}^{(3)} = 3^{\bullet}$ and $3 \nmid \deg \varphi_{\mathrm{aux}}'$.

$$E_{\text{aux}} \leftarrow \frac{\varphi_{\text{aux}}^{(3)}}{E_{\text{aux}}} = E_{\text{aux}}' \leftarrow \frac{\varphi_{\text{aux}}'}{E_{\text{com}}}$$

- $\varphi_{\text{aux}}^{(3)}$ is computed by Vélu's formula.
- Let $d := \deg \varphi'_{\text{aux}}$. $(2^e q = d \cdot 3^{\bullet})$

We want to compute φ_{aux} of degree $2^e - q$ for some $e \leq e_2$.

• Divide φ_{aux} into $\varphi_{\mathrm{aux}}^{(3)} \circ \varphi_{\mathrm{aux}}'$ s.t. $\deg \varphi_{\mathrm{aux}}^{(3)} = 3^{\bullet}$ and $3 \nmid \deg \varphi_{\mathrm{aux}}'$.

$$E_{\mathrm{aux}} \xleftarrow{\varphi_{\mathrm{aux}}^{(3)}} E'_{\mathrm{aux}} \xleftarrow{\varphi'_{\mathrm{aux}}} E_{\mathrm{com}}$$

- $\varphi_{\text{aux}}^{(3)}$ is computed by Vélu's formula.
- Let $d := \deg \varphi'_{\text{aux}}$. $(2^e q = d \cdot 3^{\bullet})$
- There is $e' \le e$ s.t. $2^{e'} > d$ and $3 \nmid 2^{e'} d$. (If $\varphi_{\rm aux}^{(3)} = {\rm id}$ then e' = e. Otherwise, e or e-1 is OK.)

We want to compute φ_{aux} of degree $2^e - q$ for some $e \leq e_2$.

• Divide φ_{aux} into $\varphi_{\mathrm{aux}}^{(3)} \circ \varphi_{\mathrm{aux}}'$ s.t. $\deg \varphi_{\mathrm{aux}}^{(3)} = 3^{\bullet}$ and $3 \nmid \deg \varphi_{\mathrm{aux}}'$.

$$E_{\mathrm{aux}} \xleftarrow{\varphi_{\mathrm{aux}}^{(3)}} E'_{\mathrm{aux}} \xleftarrow{\varphi'_{\mathrm{aux}}} E_{\mathrm{com}}$$

- $\varphi_{\text{aux}}^{(3)}$ is computed by Vélu's formula.
- Let $d := \deg \varphi'_{\text{aux}}$. $(2^e q = d \cdot 3^{\bullet})$
- There is $e' \leq e$ s.t. $2^{e'} > d$ and $3 \nmid 2^{e'} d$. (If $\varphi_{\rm aux}^{(3)} = {\rm id}$ then e' = e. Otherwise, e or e-1 is OK.)

For simplicity, we assume e' = e, i.e., $3 \nmid 2^e - d$.

How to compute φ'_{aux}

Input: $\varphi_{\text{com}}^{(1)}$, $\varphi_{\text{com}}^{(2)}$, d, e s.t.

- $\deg \varphi_{\text{com}}^{(1)} = \deg \varphi_{\text{com}}^{(2)} = 3^{e_3}$
- $e \le e_2$ and $2^e > d$.
- $3 \nmid d$ and $3 \nmid 2^e d$.

Output: $\varphi'_{\text{aux}} \upharpoonright_{E_{\text{com}}[2^{e_2}]}$ of degree d from E_{com} .

$$E_0'' \xrightarrow{\psi_0} E_0' \leftarrow E_0$$

$$\downarrow^{\varphi_{com}^{(1)}}$$

$$E_m$$

$$\downarrow^{\varphi_{com}^{(2)}}$$

$$E_{com}$$

• Compute $\alpha \in \operatorname{End}(E_0)$ s.t. $\deg \alpha = 3^{e_3} \cdot d(2^e - d)$.

- Compute $\alpha \in \operatorname{End}(E_0)$ s.t. $\deg \alpha = 3^{e_3} \cdot d(2^e d)$.
- ② Divide α into $\widehat{\varphi_0} \circ \psi_0 \circ \rho_0$ s.t. $\deg \rho_0 = 3^{e_3}$, $\deg \psi_0 = 2^e d$, and $\deg \varphi_0 = d$.

- Compute $\alpha \in \operatorname{End}(E_0)$ s.t. $\deg \alpha = 3^{e_3} \cdot d(2^e d)$.
- ② Divide α into $\widehat{\varphi_0} \circ \psi_0 \circ \rho_0$ s.t. $\deg \rho_0 = 3^{e_3}$, $\deg \psi_0 = 2^e d$, and $\deg \varphi_0 = d$.
- **3** Compute ρ_0 by Vélu's formula.

$$E_0'' \xrightarrow{\psi_0} E_0' \leftarrow \xrightarrow{\varphi_0} E_0$$

$$\downarrow^{\varphi_{\text{com}}^{(1)}}$$

$$E_{\text{m}}$$

$$\downarrow^{\varphi_{\text{com}}^{(2)}}$$

$$E_{\text{com}}$$

 $\bullet \ \ \mathsf{Compute} \ (\widehat{\pmb{\psi_0}} \circ \pmb{\varphi_0}) \restriction_{E_0[2^e]} \mathsf{by} \ \alpha \ \mathsf{and} \ \rho_0.$

$$E_0'' \xrightarrow{\psi_0} E_0' \leftarrow \xrightarrow{\varphi_0} E_0$$

$$\downarrow^{\varphi_{\text{com}}^{(1)}}$$

$$E_m$$

$$\downarrow^{\varphi_{\text{com}}^{(2)}}$$

$$E$$

- **Olympite** $(\widehat{\psi_0} \circ \varphi_0) \upharpoonright_{E_0[2^e]}$ by α and ρ_0 .
- **5** Compute ψ_0 and φ_0 by Kani's lemma.

6 Compute $\widehat{\psi_0} \circ \varphi_0(\ker \varphi_{\mathrm{com}}^{(1)})$ by ψ_0 and φ_0 .

- **6** Compute $\widehat{\psi_0} \circ \varphi_0(\ker \varphi_{\mathrm{com}}^{(1)})$ by ψ_0 and φ_0 .
- Ocompute $\varphi_1 \coloneqq (\widehat{\psi_0} \circ \varphi_0)_* \varphi_{\mathrm{com}}^{(1)}$ by Vélu's formula.

$$E_0'' \xrightarrow{\psi_0} E_0' \longleftrightarrow E_0 \longleftrightarrow E_0$$

$$E_m'' \xrightarrow{\varphi_{1*}\psi_0} E_m' \xrightarrow{\varphi_{1*}\psi_0} E_m \xrightarrow{\varphi_{com}^{(1)}} E_m$$

$$\downarrow^{\varphi_{com}^{(1)}}$$

$$E_{com}^{(2)}$$

 $\bullet \quad \mathsf{Compute} \ \widehat{\varphi_{1*}\psi_0} \circ (\varphi_{\mathsf{com}_*}^{(1)}\varphi_0) \upharpoonright_{E_{\mathsf{m}}[2^e]}.$

- $\bullet \quad \mathsf{Compute} \ \widehat{\varphi_{1*}\psi_0} \circ (\varphi_{\mathsf{com}_*}^{(1)}\varphi_0) \upharpoonright_{E_{\mathsf{m}}[2^e]}.$
- **②** Compute $\varphi_{1*}\psi_0$ and $\varphi_{\mathrm{com}_*}^{(1)}\varphi_0$ by Kani's lemma.

- \bullet Compute $\widehat{\varphi_{1*}\psi_0} \circ (\varphi_{\mathrm{com}_*}^{(1)}\varphi_0) \upharpoonright_{E_{\mathrm{m}}[2^e]}$.
- ullet Compute $arphi_{1*}\psi_0$ and $arphi_{\mathrm{com}_*}^{(1)}arphi_0$ by Kani's lemma.

(Let
$$\psi_{\mathrm{m}} \coloneqq \varphi_{1*}\psi_{0}$$
 and $\varphi_{\mathrm{m}} \coloneqq \varphi_{\mathrm{com}_{*}}^{(1)}\varphi_{0}$.)

 \circ Compute $\varphi_{
m m}(\ker arphi_{
m com}^{(2)})$ by $arphi_{
m m}.$

- **3** Compute $\varphi_{\rm m}(\ker \varphi_{\rm com}^{(2)})$ by $\varphi_{\rm m}$.
- O Compute $\varphi_{m*}\varphi_{com}^{(2)}$ by Vélu's formula.

- **3** Compute $\varphi_{\rm m}(\ker \varphi_{\rm com}^{(2)})$ by $\varphi_{\rm m}$.
- **O** Compute $\varphi_{m*}\varphi_{com}^{(2)}$ by Vélu's formula.

- **8** Compute $\varphi_{\rm m}(\ker \varphi_{\rm com}^{(2)})$ by $\varphi_{\rm m}$.
- Compute $\varphi_{m*}\varphi_{com}^{(2)}$ by Vélu's formula.
- $\bullet \quad \mathsf{Let} \; \varphi'_{\mathsf{aux}} \coloneqq \varphi^{(2)}_{\mathsf{com}_*} \varphi_{\mathsf{m}}.$
- ① Compute $\varphi'_{\text{aux}} \upharpoonright_{E_{\text{com}}[2^{e_2}]}$ by $\varphi^{(2)}_{\text{com}}$, φ_{m} , $\varphi_{\text{m*}}\varphi^{(2)}_{\text{com}}$.

Advantage of SQIsign2DPush

Fewer (2,2)-isogenies in signing.

Table: Approximate numbers of isogenies in signing (λ bits security)

$$\begin{array}{c|cccc} & 2 & 3 & (2,2) \\ \hline \textbf{Push} & \textbf{2}\lambda & \textbf{7}\lambda & \textbf{2}\lambda \\ \text{West} & 1\lambda & 0 & 9\lambda \\ \text{East} & 1\lambda & 0 & 6\lambda \\ \end{array}$$

We expect that SQIsign2DPush is faster than other SQIsign variants.

Advantage of SQIsign2DPush

Fewer (2,2)-isogenies in signing.

Table: Approximate numbers of isogenies in signing (λ bits security)

	2	3	(2, 2)
Push	2λ	7λ	2λ
West	1λ	0	9λ
East	1λ	0	6λ

We expect that SQIsign2DPush is faster than other SQIsign variants.

Note: The verification of SQIsign2DPush is slightly less efficient.

: The cyclicity check of $\widehat{\varphi_{rsp}} \circ \varphi_{chl}$ requires a point evaluation by (2,2)-isogenies.

Security

We need ad hoc security assumption:

- \bullet The distributions of $E_{\rm pk}$ and $E_{\rm com}$ come from DoublePath.
- ullet φ_{aux} is the push-forward of an isogeny from RepresentInteger.

Security

We need ad hoc security assumption:

- ullet The distributions of $E_{
 m pk}$ and $E_{
 m com}$ come from DoublePath.
- ullet φ_{aux} is the push-forward of an isogeny from RepresentInteger.

Better than SQIsign2D-East:

• $\varphi_{\rm aux}$ in East depends on $\varphi_{\rm sk}$.

Security

We need ad hoc security assumption:

- ullet The distributions of $E_{
 m pk}$ and $E_{
 m com}$ come from DoublePath.
- ullet φ_{aux} is the push-forward of an isogeny from RepresentInteger.

Better than SQIsign2D-East:

• φ_{aux} in East depends on φ_{sk} .

Trying to prove the security in a similar way to the NIST SQIsign. Still ongoing...

Parameters & Sizes

Security (bits)	p	Public key (bytes)	Sign (bytes)
128	$2^{131} \cdot 3^{78} - 1$	66	152
192	$2^{191} \cdot 3^{117} - 1$	98	220
256	$2^{263} \cdot 3^{156} - 1$	130	297

The sizes are almost the same as the NIST SQIsign.

Summary

- We proposed a new SQIsign variant, SQIsign2DPush.
- We reduced the number of (2,2)-isogenies in signing \odot
- The verification is slightly less efficient $\stackrel{ ext{@}}{=}$
- The security assumption is ad hoc @