
Post-quantum signatures in practice:
Securing IoT software updates

Benjamin Smith
SQIParty // Universitat de Lleida // 29/04/2025

Équipe-Projet GRACE // Inria Saclay

0

Constrained environments: Low-end IoT

Limited power

• Often battery-powered: need to minimise power consumption
• CPU is not the only thing consuming power: memory and network, too.

Limited memory and storage

• Very little RAM, especially once you include the enveloping application
• Small ROM/Flash: need to minimize code size and complexity

Operational constraints

• Often communicating over low-power radio
• Side-channel attack surface is often extremely large

=⇒ Hybrid pre-/post-quantum crypto highly relevant

1

Case study:
Post-quantum software updates
for low-end IoT devices

Target platform: RIOT OS

RIOT is a free, community-drive open-source OS for low-end IoT devices.
• Supports ≥ 73 CPUs (8-, 16-, and 32-bit)
• Supports ≥ 276 different boards
• Application development: C, C++, Rust
• Modular microkernel design
• Find out more: https://riot-os.org

Question: what is the practical cost of switching RIOT crypto from pre-quantum to
post-quantum cryptography?

2

https://riot-os.org

Target platform: RIOT OS

RIOT is a free, community-drive open-source OS for low-end IoT devices.
• Supports ≥ 73 CPUs (8-, 16-, and 32-bit)
• Supports ≥ 276 different boards
• Application development: C, C++, Rust
• Modular microkernel design
• Find out more: https://riot-os.org

Question: what is the practical cost of switching RIOT crypto from pre-quantum to
post-quantum cryptography?

2

https://riot-os.org

Post-quantum software updates for IoT

You can’t secure what you can’t update

, securely.

Problem: updating low-end IoT devices (low power, low memory, low price).

RIOT supports SUIT (RFC 9019): Secure Updates for the Internet of Things.
Critical cryptographic component: elliptic-curve digital signatures.

Question: what is the real cost of adding post-quantum security to SUIT?

Banegas–Herrmann–Zandberg–Baccelli–S. (ACNS + RWC 2022): transverse study

→ Dilithium vs Falcon vs LMS vs Elliptic Curves
→ ARM Cortex-M4 vs ESP vs RISC-V
→ Small firmware updates vs full software packages

3

Post-quantum software updates for IoT

You can’t secure what you can’t update, securely.

Problem: updating low-end IoT devices (low power, low memory, low price).

RIOT supports SUIT (RFC 9019): Secure Updates for the Internet of Things.
Critical cryptographic component: elliptic-curve digital signatures.

Question: what is the real cost of adding post-quantum security to SUIT?

Banegas–Herrmann–Zandberg–Baccelli–S. (ACNS + RWC 2022): transverse study

→ Dilithium vs Falcon vs LMS vs Elliptic Curves
→ ARM Cortex-M4 vs ESP vs RISC-V
→ Small firmware updates vs full software packages

3

Post-quantum software updates for IoT

You can’t secure what you can’t update, securely.

Problem: updating low-end IoT devices (low power, low memory, low price).

RIOT supports SUIT (RFC 9019): Secure Updates for the Internet of Things.
Critical cryptographic component: elliptic-curve digital signatures.

Question: what is the real cost of adding post-quantum security to SUIT?

Banegas–Herrmann–Zandberg–Baccelli–S. (ACNS + RWC 2022): transverse study

→ Dilithium vs Falcon vs LMS vs Elliptic Curves
→ ARM Cortex-M4 vs ESP vs RISC-V
→ Small firmware updates vs full software packages

3

Post-quantum software updates for IoT

You can’t secure what you can’t update, securely.

Problem: updating low-end IoT devices (low power, low memory, low price).

RIOT supports SUIT (RFC 9019): Secure Updates for the Internet of Things.
Critical cryptographic component: elliptic-curve digital signatures.

Question: what is the real cost of adding post-quantum security to SUIT?

Banegas–Herrmann–Zandberg–Baccelli–S. (ACNS + RWC 2022): transverse study

→ Dilithium vs Falcon vs LMS vs Elliptic Curves
→ ARM Cortex-M4 vs ESP vs RISC-V
→ Small firmware updates vs full software packages

3

SUIT: Software Updates for the Internet of Things

4

What we measured: pre- and post-quantum signature schemes

Pre-quantum baseline (SUIT standard) and Post-quantum alternatives

Private key Public key Signature SUIT Manifest
Algorithm Bytes Ratio Bytes Ratio Bytes Ratio Bytes Ratio

Ed25519 or ECDSA 32 1× 32 1× 64 1× 483 1×

Dilithium 2528 79× 1312 41× 2420 37.8× 2839 5.88×Static1 Dilithium 18912 591× 17696 553×
Falcon 1281 40× 897 28× 666 10.4× 1085 2.24×

LMS2 (RFC8554) 64 2× 60 0.94× 4756 74.3× 5175 10.7×

SQIsign 353 11× 65 2× 148 2.31× 567 1.17×
1Static Dilithium = matrices expanded from seed and stored.
2LMS = Leighton–Micali, stateful hash-based signatures. State is not a problem for this application.

5

Three boards representing the 32-bit microcontroller landscape

RIOT supports ≥ 272 platforms: we have to emphasize portability.

• No assembly, no platform-specific tricks.
• Open implementations (notably PQClean)
• Minimal modifications for RIOT compatibility: removing malloc, etc.

We took three representative 32-bit boards:

Architecture Board Speed RAM (kB) Flash (kB)

ARM Cortex-M4 Nordic nRF52480 64MHz 256 1024
Espressif ESP32 WROOM-32 80MHz 520 448

RISC V Sipeed Longan Nano 72MHz 32 128

6

Signature benchmarks: Verification on ARM Cortex-M4

Algorithm Base library Flash (B) Stack (B) Time (ms)

Ed25519 C25519 5106 1300 1953
Ed25519 Monocypher 13852 1936 40

ECDSA Tinycrypt 6498 1024 313

Dynamic Dilithium PQClean 11664 36058 53
Static Dilithium PQClean 26672 19504 23

Falcon PQClean 57613 4744 15
LMS (RFC8554) Cisco 12864 1580 123

SQIsign Reference -O3 FIXME 31016 2483
Reference -Os FIXME 30604 3575

• Similar figures for ESP32 and RISC-V
• Dynamic Dilithium cannot run on the Sipeed Nano (RISC-V): only 32kB RAM 7

Impact on data transfer

Example: suppose we want to update RIOT firmware for the nRF52480 board.
The firmware itself is a ≈ 46kB binary, and the (pre-quantum) crypto is ≈ 6kB.

How much data do we need to transmit?

SUIT Data Transfer
Signature Hash Flash Stack no crypto crypto incl.

Ed25519 SHA256 52.4kB 16.3kB 47kB 53kB

Dilithium SHA3-256 +30% +210% +4.3% +34%
Falcon SHA3-256 +120% +18% +1.1% +120%

LMS SHA3-256 +34% +1.2% +9% +43%

8

Recommendations for four typical software updates

1. Small software module update: ≈ 5kB =⇒ prefer Falcon
Speed and signature size are critical

2. Small firmware update ≈ 50kB without crypto libs =⇒ prefer Falcon
Again, speed and signature size are critical

3. Small firmware update ≈ 50kB plus crypto libs =⇒ prefer LMS
Larger crypto lib transfer =⇒ higher energy cost on low-power networks.
It takes 30-60s to transfer 50kB on a low-power IEEE802.15.4 radio link,
but signature verification only varies by 2s between all candidates...
LMS has the best tradeoff between code size, stack, network costs, and speed

4. Large firmware update ≈ 250kB =⇒ no preference
Network transfer costs overwhelm other factors, reducing relative advantages

9

Recommendations for four typical software updates

1. Small software module update: ≈ 5kB =⇒ prefer Falcon
Speed and signature size are critical

2. Small firmware update ≈ 50kB without crypto libs =⇒ prefer Falcon
Again, speed and signature size are critical

3. Small firmware update ≈ 50kB plus crypto libs =⇒ prefer LMS
Larger crypto lib transfer =⇒ higher energy cost on low-power networks.
It takes 30-60s to transfer 50kB on a low-power IEEE802.15.4 radio link,
but signature verification only varies by 2s between all candidates...
LMS has the best tradeoff between code size, stack, network costs, and speed

4. Large firmware update ≈ 250kB =⇒ no preference
Network transfer costs overwhelm other factors, reducing relative advantages

9

Recommendations for four typical software updates

1. Small software module update: ≈ 5kB =⇒ prefer Falcon
Speed and signature size are critical

2. Small firmware update ≈ 50kB without crypto libs =⇒ prefer Falcon
Again, speed and signature size are critical

3. Small firmware update ≈ 50kB plus crypto libs =⇒ prefer LMS
Larger crypto lib transfer =⇒ higher energy cost on low-power networks.
It takes 30-60s to transfer 50kB on a low-power IEEE802.15.4 radio link,
but signature verification only varies by 2s between all candidates...
LMS has the best tradeoff between code size, stack, network costs, and speed

4. Large firmware update ≈ 250kB =⇒ no preference
Network transfer costs overwhelm other factors, reducing relative advantages

9

Recommendations for four typical software updates

1. Small software module update: ≈ 5kB =⇒ prefer Falcon
Speed and signature size are critical

2. Small firmware update ≈ 50kB without crypto libs =⇒ prefer Falcon
Again, speed and signature size are critical

3. Small firmware update ≈ 50kB plus crypto libs =⇒ prefer LMS
Larger crypto lib transfer =⇒ higher energy cost on low-power networks.
It takes 30-60s to transfer 50kB on a low-power IEEE802.15.4 radio link,
but signature verification only varies by 2s between all candidates...
LMS has the best tradeoff between code size, stack, network costs, and speed

4. Large firmware update ≈ 250kB =⇒ no preference
Network transfer costs overwhelm other factors, reducing relative advantages

9

Conclusions

Post-quantum IoT software updates with SUIT are feasible now.

• Falcon is best for smaller module and firmware updates;
• LMS is better when the crypto lib is transferred;
• but there is no clear winner for much larger updates.

https://ia.cr/2021/781

Consider using RIOT for easy, portable, open IoT crypto development.

https://riot-os.org/

10

https://ia.cr/2021/781
https://riot-os.org/

	Case study: Post-quantum software updates for low-end IoT devices

