Algorithms for modular correspondences between abelian varieties with level structure

Antoine Dequay¹, David Lubicz^{1,2}

SQIparty 2025

¹Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes

²DGA Maîtrise de l'information, BP 7419, F-35174 Bruz

Context

An abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + algebraic group law.
- An abelian variety is projective, smooth, irreducible and its group law is abelian.

An abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + algebraic group law.
- An abelian variety is projective, smooth, irreducible and its group law is abelian.

Examples

- Elliptic curves = Abelian varieties of dimension 1,
- Jacobians of genus g (smooth) curves are abelian varieties of dimension g,
- The inclusion is strict for $g \ge 4$.

An isogeny is a finite surjective morphisme between abelian varieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies \iff Finite subgroups :

 $(f: A \to B) \mapsto \operatorname{Ker} f$ $(A \to A/H) \leftarrow H$

An isogeny is a finite surjective morphisme between abelian varieties.

- Isogenies = Rational map + group morphism + finite kernel.
- Isogenies \iff Finite subgroups :

 $(f: A \to B) \mapsto \operatorname{Ker} f$ $(A \to A/H) \leftarrow H$

Example

Multiplication by $\ell \mapsto A[\ell]$, the ℓ -torsion of A).

Property

A complex abelian variety is of the form $\mathbb{C}^g/(\mathbb{Z}^g + \Omega\mathbb{Z}^g)$, with $\Omega \in \mathcal{H}_g$, the Siegel upper-half space.

Property

A complex abelian variety is of the form $\mathbb{C}^g/(\mathbb{Z}^g + \Omega\mathbb{Z}^g)$, with $\Omega \in \mathcal{H}_g$, the Siegel upper-half space.

A projective embedding of $A = \mathbb{C}^g / \Lambda$ can be given by quasi-periodic functions with respect to Λ .

Definition

The space \mathcal{L}_m of A-quasi-periodic function of level m is the space of analytic function satisfying, for $z \in \mathbb{C}^g$ and $\lambda \in \mathbb{Z}^g$:

$$f(z + \lambda) = f(z)$$
 $f(z + \Omega\lambda) = \exp(-m \cdot \pi i^t \lambda \Omega \lambda - m \cdot 2\pi i^t z \lambda) f(z).$

Definition

A theta function with rational characteristics $a,b\in \mathbb{Q}^g$ is given by :

$$heta \left[\begin{smallmatrix} a \\ b \end{smallmatrix}
ight](z,\Omega) = \sum_{n \in \mathbb{Z}^g} \exp\left(\imath \pi^t(n+a)\Omega(n+a) + 2\imath \pi^t(n+a)(z+b)
ight)$$

Definition

A theta function with rational characteristics $a, b \in \mathbb{Q}^g$ is given by :

$$hetaigg[{a \atop b}](z,\Omega) = \sum_{n\in \mathbb{Z}^g} \expig(\imath\pi^t(n+a)\Omega(n+a)+2\imath\pi^t(n+a)(z+b)ig)\,.$$

For $m \geq 2$, let $Z(m) = \mathbb{Z}^g/m\mathbb{Z}^g$. A basis of \mathcal{L}_m is given by :

$$\left\{ heta_i := heta \left[\begin{smallmatrix} \mathbf{o} \\ i/m \end{smallmatrix}
ight] (\cdot, \Omega/m)
ight\}_{i \in Z(m)}.$$

Definition

A theta function with rational characteristics $a, b \in \mathbb{Q}^g$ is given by :

$$hetaigg[{a \atop b}](z,\Omega) = \sum_{n\in \mathbb{Z}^g} \expig(\imath\pi^t(n+a)\Omega(n+a)+2\imath\pi^t(n+a)(z+b)ig)\,.$$

For $m\geq 2$, let $Z(m)=\mathbb{Z}^g/m\mathbb{Z}^g.$ A basis of \mathcal{L}_m is given by :

$$\left\{ heta_i := heta \left[\begin{smallmatrix} \mathbf{o} \\ i/m \end{smallmatrix}
ight] (\cdot, \Omega/m)
ight\}_{i \in Z(m)}$$

If $m \ge 3$, it gives us an embedding :

$$\varphi_{m,\Omega}: \left(\begin{array}{cc} A & \longrightarrow & \mathbb{P}^{Z(m)} \\ z & \longmapsto & (\theta_i(z))_{i \in Z(m)} \end{array}\right)$$

Definition

A theta function with rational characteristics $a,b\in\mathbb{Q}^g$ is given by :

$$hetaigg[{a \atop b}](z,\Omega) = \sum_{n\in\mathbb{Z}^g} \expig(\imath\pi^t(n+a)\Omega(n+a)+2\imath\pi^t(n+a)(z+b)ig)\,.$$

For $m\geq 2$, let $Z(m)=\mathbb{Z}^g/m\mathbb{Z}^g.$ A basis of \mathcal{L}_m is given by :

$$\left\{ heta_i := heta \left[\begin{smallmatrix} \mathbf{o} \\ i/m \end{smallmatrix}
ight] (\cdot, \Omega/m)
ight\}_{i \in Z(m)}$$

If $m \ge 3$, it gives us an embedding :

$$\varphi_{m,\Omega}: \left(\begin{array}{cc} A & \longrightarrow & \mathbb{P}^{Z(m)} \\ z & \longmapsto & (\theta_i(z))_{i \in Z(m)} \end{array}\right)$$

The point $\varphi_{m,\Omega}(0_A)$ is called the theta null point of $\varphi_{m,\Omega}$.

Theorem (Mumford)

The level *m* theta null point $(a_i)_{i \in Z(m)}$ satisfy the Riemann equations of evel *m*:

$$L(x,y)L(u,v) = L(x+z,y-z)L(u-z,v-z),$$

with L(x, y) of the form $\sum_{t \in Z(2)} \chi(t) a_{x+t} a_{y+t}$.

Theorem (Mumford)

The level *m* theta null point $(a_i)_{i \in Z(m)}$ satisfy the Riemann equations of evel *m*:

$$L(x,y)L(u,v) = L(x+z,y-z)L(u-z,v-z),$$

with L(x, y) of the form $\sum_{t \in Z(2)} \chi(t) a_{x+t} a_{y+t}$, and the symmetry relations of level *m*:

 $a_x = a_{-x}$.

Theorem (Mumford)

The level *m* theta null point $(a_i)_{i \in Z(m)}$ satisfy the Riemann equations of evel *m*:

$$L(x,y)L(u,v) = L(x+z,y-z)L(u-z,v-z),$$

with L(x, y) of the form $\sum_{t \in Z(2)} \chi(t) a_{x+t} a_{y+t}$, and the symmetry relations of level *m*:

 $a_x = a_{-x}$.

This systeme is complete !

Theorem (Mumford)

The level *m* theta null point $(a_i)_{i \in Z(m)}$ satisfy the Riemann equations of evel *m*:

$$L(x,y)L(u,v) = L(x+z,y-z)L(u-z,v-z),$$

with L(x, y) of the form $\sum_{t \in Z(2)} \chi(t) a_{x+t} a_{y+t}$, and the symmetry relations of level *m*:

 $a_x = a_{-x}$.

This systeme is complete !

Definition

There is an action by translation of $Z(m) \times Z(m)$ on the theta basis :

$$(i,j) \cdot \theta_k = \theta_k(\cdot - i/m - \Omega j/m) = e_{\mathcal{L}_m}(i+k,j)\theta_{i+k},$$

where $e_{\mathcal{L}_m}$ is the commutator paring.

Theorem

• Let $\psi : Z(m) \to Z(dm)$ be the canonical embedding. Let $K = (\{0\} \times Z(m)) \cdot 0_A \subset A[m] \subset A[dm],$

Theorem

- Let $\psi : Z(m) \to Z(dm)$ be the canonical embedding. Let $K = (\{0\} \times Z(m)) \cdot 0_A \subset A[m] \subset A[dm]$,
- Let $(\theta_i^A)_{i \in Z(md)}$ be the theta functions of level md on $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$,

Theorem

- Let $\psi : Z(m) \to Z(dm)$ be the canonical embedding. Let $K = (\{0\} \times Z(m)) \cdot 0_A \subset A[m] \subset A[dm]$,
- Let $(\theta_i^A)_{i \in Z(md)}$ be the theta functions of level md on $A = \mathbb{C}^g/(\mathbb{Z}^g + \Omega \mathbb{Z}^g)$,
- Let $(\theta_i^B)_{i \in Z(m)}$ be the theta functions of level m on $B = A/K = \mathbb{C}^g/(\mathbb{Z}^g + (\Omega/m)\mathbb{Z}^g)$,

Theorem

- Let $\psi : Z(m) \to Z(dm)$ be the canonical embedding. Let $K = (\{0\} \times Z(m)) \cdot 0_A \subset A[m] \subset A[dm]$,
- Let $(\theta_i^A)_{i \in Z(md)}$ be the theta functions of level md on $A = \mathbb{C}^g/(\mathbb{Z}^g + \Omega \mathbb{Z}^g)$,
- Let $(\theta_i^B)_{i \in \mathbb{Z}(m)}$ be the theta functions of level m on $B = A/K = \mathbb{C}^g/(\mathbb{Z}^g + (\Omega/m)\mathbb{Z}^g)$,
- We have :

$$\left(\theta_{i}^{B}\right)_{i\in\mathcal{Z}(m)}=\left(\theta_{\psi(i)}^{A}\right)_{i\in\mathcal{Z}(m)}$$

Theorem

- Let $\psi : Z(m) \to Z(dm)$ be the canonical embedding. Let $K = (\{0\} \times Z(m)) \cdot 0_A \subset A[m] \subset A[dm]$,
- Let $(\theta_i^A)_{i \in Z(md)}$ be the theta functions of level md on $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$,
- Let $(\theta_i^B)_{i \in Z(m)}$ be the theta functions of level m on $B = A/K = \mathbb{C}^g/(\mathbb{Z}^g + (\Omega/m)\mathbb{Z}^g)$,

• We have :

$$\left(\theta_{i}^{B}\right)_{i\in\mathcal{Z}(m)}=\left(\theta_{\psi(i)}^{A}\right)_{i\in\mathcal{Z}(m)}$$

Proof.

$$heta \left[\begin{smallmatrix} \mathbf{o} \\ _{i/m} \end{smallmatrix}
ight] (\cdot, (\Omega/m)/d) = heta \left[\begin{smallmatrix} \mathbf{o} \\ _{di/dm} \end{smallmatrix}
ight] (\cdot, \Omega/dm) \, .$$

Goal

Definition : Changing level

A change of level algorithm takes the theta null point of level m of A, and K = A[dm], and computes the theta null point of level dm of A (going up) or the other way around (going down).

Definition : Changing level

A change of level algorithm takes the theta null point of level m of A, and K = A[dm], and computes the theta null point of level dm of A (going up) or the other way around (going down).

Definition : Computing isogeny

An isogeny computation algorithm takes the theta null point of a A of level m, and $K \subset A[dm]$ a subgroup isomorphic to Z(d), and computes the theta null point of an abelian variety B of level m, where B = A/K, and the isogeny $f : A \to B$.

$$(X_i)_{i \in Z(md)}$$

$$(X_i)_{i \in Z(md)} \begin{cases} \text{Riemann equations} \\ \text{Symmetry relations} \\ \text{Specialisations} (X_{\psi(i)} = a_i)_{i \in Z(m)} \end{cases} \\ (a_i)_{i \in Z(m)} \longrightarrow \begin{cases} \text{Riemann equations} \\ \text{Symmetry relations} \end{cases}$$

$$(X_i)_{i \in \mathbb{Z}(md)} \xleftarrow{\text{Gröbner}} \left\{ \begin{array}{c} \text{Riemann equations} \\ \text{Symmetry relations} \\ \text{Specialisations} (X_{\psi(i)} = a_i)_{i \in \mathbb{Z}(m)} \end{array} \right\}$$

$$(a_i)_{i \in \mathbb{Z}(m)} \xrightarrow{\text{Gröbner}} \left\{ \begin{array}{c} \text{Riemann equations} \\ \text{Riemann equations} \\ \text{Symmetry relations} \end{array} \right\}$$

Basic idea : to find a theta null point of level md from a theta null point of level m :

$$(X_i)_{i \in Z(md)} \xleftarrow{\text{Gröbner}} \left\{ \begin{array}{c} \text{Riemann equations} \\ \text{Symmetry relations} \\ \text{Specialisations} (X_{\psi(i)} = a_i)_{i \in Z(m)} \end{array} \right\}$$

$$(a_i)_{i \in Z(m)} \xrightarrow{\text{Gröbner}} \left\{ \begin{array}{c} \text{Riemann equations} \\ \text{Riemann equations} \\ \text{Symmetry relations} \end{array} \right\}$$

Can we do better ?

Basic idea : to find a theta null point of level md from a theta null point of level m :

Can we do better ?

Basic idea : to find a theta null point of level md from a theta null point of level m :

$$(X_i)_{i \in Z(md)} \xleftarrow{\text{Gröbner}} \left\{ \begin{array}{c} \text{Riemann equations} \\ \text{Symmetry relations} \\ \text{Specialisations} (X_{\psi(i)} = a_i)_{i \in Z(m)} \end{array} \right\} \\ \bigcup \\ \text{Sufficient,} \\ \text{Symmetry relations} \\ \text{Symmetry relations} \end{array} \right\}$$

Can we do better ?

Previous results :

- Duplication formula : going up from level *m* to level 2*m*;
- Koizumi formula : going down from level *dm* to level *m*;
- [LR22] : change of level alg. & isogeny comp. for 2 / d or $d \wedge m = 1$.

Results

Compatibility and first difference

Definition

Two theta null points of level m_1 and m_2 , say $\varphi_{m_1,\Omega_1}(0)$ and $\varphi_{m_2,\Omega_2}(0)$, are said to be compatible if there exists d such that $m_1 = dm_2$, and if there exists $\Omega \in \mathcal{H}_g$ such that $\Omega/m_i \simeq \Omega_i \mod \Gamma(m_i, 2m_i)$ for i = 1, 2, where $\Gamma(m, 2m)$ is a congruence subgroup of $\operatorname{Sp}_{2g}(\mathbb{Z})$ (Igusa level m subgroups).

Compatibility and first difference

Definition

Two theta null points of level m_1 and m_2 , say $\varphi_{m_1,\Omega_1}(0)$ and $\varphi_{m_2,\Omega_2}(0)$, are said to be compatible if there exists d such that $m_1 = dm_2$, and if there exists $\Omega \in \mathcal{H}_g$ such that $\Omega/m_i \simeq \Omega_i \mod \Gamma(m_i, 2m_i)$ for i = 1, 2, where $\Gamma(m, 2m)$ is a congruence subgroup of $\operatorname{Sp}_{2g}(\mathbb{Z})$ (Igusa level m subgroups).

From A an abelian variety of level m, and $\varphi_{m,\Omega}(0_A)$ its theta null point :

Case 2 $\not\mid d$ or $d \wedge m = 1$

Any abelian variety of the form A/K, where $K \subset A[dm]$ is isomorphic to Z(d), can be equiped with a theta null point compatible with $\varphi_{m,\Omega}(0_A)$.

Compatibility and first difference

Definition

Two theta null points of level m_1 and m_2 , say $\varphi_{m_1,\Omega_1}(0)$ and $\varphi_{m_2,\Omega_2}(0)$, are said to be compatible if there exists d such that $m_1 = dm_2$, and if there exists $\Omega \in \mathcal{H}_g$ such that $\Omega/m_i \simeq \Omega_i \mod \Gamma(m_i, 2m_i)$ for i = 1, 2, where $\Gamma(m, 2m)$ is a congruence subgroup of $\operatorname{Sp}_{2g}(\mathbb{Z})$ (Igusa level m subgroups).

From A an abelian variety of level m, and $\varphi_{m,\Omega}(0_A)$ its theta null point :

Case 2 $\not\mid d$ or $d \land m = 1$

Any abelian variety of the form A/K, where $K \subset A[dm]$ is isomorphic to Z(d), can be equiped with a theta null point compatible with $\varphi_{m,\Omega}(0_A)$.

Case 2|d|m

There is a unique $K_0 \subset A[dm]$, isomorphic to Z(d), such that A/K_0 can be equiped with a theta null point compatible with $\varphi_{m,\Omega}(0_A)$:

$$K_0 = \left(rac{m}{d}Z(d) imes \{0\}
ight)\cdot 0_A.$$

What method for our algorithms?

Case 2 // d or $d \wedge m = 1$: Excellent lift

- Compute an affine lift of K (and other groups), consistent with relations on A;
- Use formulas for theta null point/image by the isogeny.

What method for our algorithms?

Case 2 $\not|$ d or $d \wedge m = 1$: Excellent lift

- Compute an affine lift of K (and other groups), consistent with relations on A;
- Use formulas for theta null point/image by the isogeny.

Tools :

- Differential addition : $\widetilde{x + y} = \text{DiffAdd}(\tilde{x}, \tilde{y}, \widetilde{x y});$
- Action of $Z(m) \times Z(m)$;

• Inv :
$$\widetilde{x} = (\widetilde{x}_i)_{i \in Z(m)} \mapsto \widetilde{-x} = (\widetilde{x}_{-i})_{i \in Z(m)}.$$

What method for our algorithms?

Case 2 $\not|$ d or $d \wedge m = 1$: Excellent lift

- Compute an affine lift of K (and other groups), consistent with relations on A;
- Use formulas for theta null point/image by the isogeny.

Tools :

- Differential addition : $\widetilde{x + y} = \text{DiffAdd}(\tilde{x}, \tilde{y}, \widetilde{x y});$
- Action of $Z(m) \times Z(m)$;

• Inv :
$$\widetilde{x} = (\widetilde{x}_i)_{i \in Z(m)} \mapsto \widetilde{-x} = (\widetilde{x}_{-i})_{i \in Z(m)}$$
.

Definition

Let (e_1, \ldots, e_g) be a basis of Z(md)/Z(m). We say that $(e_i, e_i + e_j)_{i,j=1,\ldots,g}$ is a chain basis of Z(d).

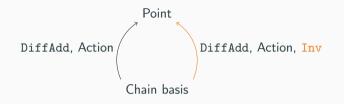
Example

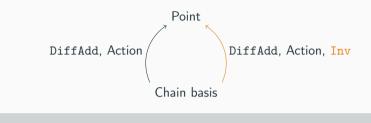
For g = 2, a chain basis of Z(d) is ((1,0), (0,1), (1,1)).

Chain basis

Point

Chain basis





Definition

We set :

$$S_{\texttt{Inv}} = \left\{t \in Z(dm), \ t = -t \ \operatorname{mod} Z(m)
ight\}.$$

Definition

We set :

$$S_{\operatorname{Inv}} = \left\{ t \in Z(dm), \ t = -t \ \operatorname{mod} Z(m)
ight\}.$$

Case 2 $\not\mid d$ or $d \land m = 1$

If 2
$$\not\mid d$$
 or $d \wedge m = 1$, then $S_{Inv} = \{0\}$.

In other words, Inv acts freely on the set of points we can compute thanks to DiffAdd and the action of $Z(m) \times Z(m)$.

Definition

We set :

$$S_{\texttt{Inv}} = \left\{t \in Z(dm), \ t = -t \ \text{mod} \ Z(m)
ight\}.$$

Case 2 $\not\mid d$ or $d \wedge m = 1$ If 2 $\not\mid d$ or $d \wedge m = 1$, then $S_{Inv} = \{0\}$.

In other words, Inv acts freely on the set of points we can compute thanks to DiffAdd and the action of $Z(m) \times Z(m)$. Case 2|d|m: new relations Let $\phi : Z(dm) \rightarrow A[dm]$ be a numbering of A[dm]. For $t \in S_{Inv}$, we have :

 $\phi(t) = (2dt, 0) \cdot \operatorname{Inv}(\phi(t)),$

where $dt \in Z(m)$.

Remedying the obstruction : symmetric compatibility

Proposition

If there exists $t \in S_{inv}$ such that $\phi(t) \neq (2dt, 0) \cdot \operatorname{Inv}(\phi(t))$, then $-\phi(t) = (2dt, 0) \cdot \operatorname{Inv}(\phi(t))$. This property is Z(m)-linear in t !

Remedying the obstruction : symmetric compatibility

Proposition

If there exists $t \in S_{inv}$ such that $\phi(t) \neq (2dt, 0) \cdot \operatorname{Inv}(\phi(t))$, then $-\phi(t) = (2dt, 0) \cdot \operatorname{Inv}(\phi(t))$. This property is Z(m)-linear in t!

Proposition : Changing the theta null point to make it sym. compatible For $(e_i)_{i=1,...,g}$ a basis of Z(md), if $\phi(e_i) \neq (2de_i, 0) \cdot Inv(\phi(e_i))$, then by replacing θ_k by $-\theta_k$ for $k \in \langle e_i \rangle$, we get the equality.

Example

For g = 1, m = d = 2 and a theta null point $(a_0 : a_1 : a_2 : a_3)$, either $(a_0 : a_1 : a_2 : a_3)$ or $(a_0 : -a_1 : a_2 : -a_3)$ is symmetric compatible with K.

Remedying the obstruction : symmetric compatibility

Proposition

If there exists $t \in S_{inv}$ such that $\phi(t) \neq (2dt, 0) \cdot \operatorname{Inv}(\phi(t))$, then $-\phi(t) = (2dt, 0) \cdot \operatorname{Inv}(\phi(t))$. This property is Z(m)-linear in t!

Proposition : Changing the theta null point to make it sym. compatible For $(e_i)_{i=1,...,g}$ a basis of Z(md), if $\phi(e_i) \neq (2de_i, 0) \cdot \operatorname{Inv}(\phi(e_i))$, then by replacing θ_k by $-\theta_k$ for $k \in \langle e_i \rangle$, we get the equality.

Example

For g = 1, m = d = 2 and a theta null point $(a_0 : a_1 : a_2 : a_3)$, either $(a_0 : a_1 : a_2 : a_3)$ or $(a_0 : -a_1 : a_2 : -a_3)$ is symmetric compatible with K.

Proposition : Changing K to make it symmetric compatible

For $(e_i)_{i=1,\ldots,g}$ a basis of Z(md), if $\phi(e_i) \neq (2de_i, 0) \cdot \operatorname{Inv}(\phi(e_i))$, then : $\phi(e_i) + (0, \frac{md}{2}e_i) \cdot \phi(0) = (2de_i, 0) \cdot \operatorname{Inv}(\phi(e_i)).$

Theorem : Changing level (going up)

- Input : A basis of K = A[dm] and $\varphi_{m,\Omega}(0_A)$ the theta null point of level m of A;
- We make K symmetric compatible with φ_{m,Ω}(0_A) (equivalent to a change of numbering or basis);
- We compute an affine lift of K (and other groups), consistent with relations on A;
- We use formulas for the theta null point of level *dm* of *A*.

Application

Theorem : Changing level (going up)

- Input : A basis of K = A[dm] and $\varphi_{m,\Omega}(0_A)$ the theta null point of level m of A;
- We make K symmetric compatible with φ_{m,Ω}(0_A) (equivalent to a change of numbering or basis);
- We compute an affine lift of K (and other groups), consistent with relations on A;
- We use formulas for the theta null point of level dm of A.

Theorem : Computing isogeny

- Input : A basis of K ⊂ A[dm] a subgroup isomorphic to Z(d) and φ_{m,Ω}(0_A) the theta null point of level m of A;
- We make $\varphi_{m,\Omega}(0_A)$ symmetric compatible with it K;
- We compute an affine lift of K (and other groups), consistent with relations on A;
- We use formulas for the image by the isogeny $A \rightarrow A/K$.

Application

Theorem : Changing level (going up)

- We make K symmetric compatible with φ_{m,Ω}(0_A) (equivalent to a change of numbering or basis);
- We compute an affine lift of K (and other groups), consistent with relations on A;
- We use formulas for the theta null point of level *dm* of *A*.

Theorem : Computing isogeny

- We make $\varphi_{m,\Omega}(0_A)$ symmetric compatible with it K;
- We compute an affine lift of K (and other groups), consistent with relations on A;
- We use formulas for the image by the isogeny $A \rightarrow A/K$.

Thank you for your attention !