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Main character: pairings of elliptic curves
Pairings are bilinear maps from subgroups/quotients of elliptic curves with nice extra properties
er: Gy xGy — u Ck~

P.Q) — erq N
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Main character: pairings of elliptic curves
Pairings are bilinear maps from subgroups/quotients of elliptic curves with nice extra properties
: C k~
€y G1><G2 — ug_k /e N
(P7Q) = eg(P, Q)
Countless uses in crypto:

@ curve-based and pairing-based cryptography
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» field characteristic p = char k with fast arithmetic
» P,Q on a fixed curve E with small/nice coefficients
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Countless uses in crypto:
@ curve-based and pairing-based cryptography ~~ highly optimized parameters:

» field characteristic p = char k with fast arithmetic
» P,Q on a fixed curve E with small/nice coefficients

@ isogeny-based crypto:
» parameters p, E already constrained (e.g. for rational torsion)
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Main character: pairings of elliptic curves

Pairings are bilinear maps from subgroups/quotients of elliptic curves with nice extra properties

(T G1XG2 — /Legkx
teN
(P7Q) = eE(P7 Q)
Countless uses in crypto:
@ curve-based and pairing-based cryptography ~~ highly optimized parameters:

» field characteristic p = char k with fast arithmetic
» P,Q on a fixed curve E with small/nice coefficients

@ isogeny-based crypto:
» parameters p, E already constrained (e.g. for rational torsion)

~» need fast generic pairing.
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Main character: pairings of elliptic curves
Pairings are bilinear maps from subgroups/quotients of elliptic curves with nice extra properties
: C k~
€y G1><G2 — ,ug_]@ /e N
(P7 Q) = eE(P7 Q)
Countless uses in crypto:

@ curve-based and pairing-based cryptography ~~ highly optimized parameters:
> field characteristic p = char k with fast arithmetic
» P,Q on a fixed curve E with small/nice coefficients
@ isogeny-based crypto:
» parameters p, E already constrained (e.g. for rational torsion)
~> need fast generic pairing.

Cost of generic pairings per bit of £:

‘ Tate pairing ‘ Weil pairing
State of the art [CLZ24]! | 11.3M + 7.7S + 20.7A 5 . Tate pairin
[Rob24]2 ~ our work OM + 65 + 16A pairing

Cai, Lin, Zhao, Pairing Optimizations for Isogeny-based Cryptosystems, eprint.iacr.org/2024/575
2Robert, Fast pairings via biextensions and cubical arithmetic, eprint.iacr.org/2024/517
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Montgomery ladder

Computes scalar multiplication P +— [¢|P
using z-only arithmetic: P = (Xp : Zp)
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Montgomery ladder

Computes scalar multiplication P +— [¢|P
using x-only arithmetic: P = (Xp : Zp)

Forgetting about Y, sign ambiguity =P ~~

can't add P + @Q with the usual group law.
On E/+ we have two operations
XDBL: P — [2]P

XADD: (P, Py; P, — Py) — P+ Py

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 2/10



Montgomery ladder
Computes scalar multiplication P +— [(]P

(P (+1]P
using z-only arithmetic: P = (Xp : Zp) [£] [+ 1]

Forgetting about Y, sign ambiguity P ~ ’
can't add P + @ with the usual group law. [2n]P 2n+1]P

On E/+ we have two operations
xDBL: P — [2|P

XADD: (P, Po; P — Ps) s P + P [n1P [ +1]P
Combine them into a
P 2P
LADDER: (¢, P) — ([(]P, [¢ + 1]P).
O P
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Montgomery ladder

Computes scalar multiplication P +— [¢|P
using x-only arithmetic: P = (Xp : Zp)

Forgetting about Y, sign ambiguity =P ~~
can't add P + @ with the usual group law. [2n—iA- P [2n t 2P
On E/+ we have two operations XADDp xDBL
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Montgomery ladder

Cc?mputes scale?r mult.iplication P [P P
using x-only arithmetic: P = (Xp : Zp)
Forgetting about Y., sign ambiguity =P ~~ 2n]P
can't add P + @Q with the usual group law. N
On E/+ we have two operations <DBL
XDBL: P v [2]P
XADD: (P, Po; P — Ps) s P + P [n1P
Combine them into a
LADDER: (¢, P) — ([(]P, [¢ + 1]P). OP
E

Alessandro Sferlazza (TUM) Ladders compute pairings

28/05/2025

2/10



Montgomery ladder

Computes scalar multiplication P +— [¢|P P
using x-only arithmetic: P = (Xp : Zp)

Forgetting about Y, sign ambiguity =P ~~

can't add P + @ with the usual group law. [27}\]13
On E/+ we have two operations <DBL
XDBL: P+ [2|P
XADD: (P, Po; P — Ps) s P + P [n1P
Combine them into a
LADDER: (¢, P) — ([(]P, [¢ + 1]P). ;D
E

Generalizable to a 3PTLADDER with offset Q.
Need input £(P — Q).
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The role of monodromy
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The role of monodromy
Torsion relation in E(k)
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Alessandro Sferlazza (TUM)

Torsion relation in Pic’(E)(k)
[4(P) = £(0p)] =0

Ladders compute pairings

Monodromy in DivY(E)
U(P) = £(0g) = div f,p
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The role of monodromy
Torsion relation in E(k) Torsion relation in Pic’(E)(k) Monodromy in Div?(E)

P =0 < [6(P) — £(0g)] =0 T UP) — 0(0p) = div fop
The non-reduced Tate pairing of degree ¢ € N over k stems from monodromy:
ere:  El0(k) x B(k)/[OE(k) — k*/(k*)"

(P, [Q)) = for(Q)

=
@?))\
JQCD .
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The role of monodromy
Torsion relation in E(k) Torsion relation in Pic’(E)(k) Monodromy in Div?(E)

< < )
[P =0 [¢(P) —¢(0g)] =0 {(P) —£(0p) = div fr p
The non-reduced Tate pairing of degree ¢ € N over k stems from monodromy:

ere: E[O(R) x ER)/[OB(R) — k*/(k%)!

) (P.(q) 5 (@
@Y Miller's algorithm: o
@ e Compute P — [(]P = 0, say using an addition chain P,2P,...,(P
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The role of monodromy
Torsion relation in E(k) Torsion relation in Pic®(FE)(k) Monodromy in Div?(E)

> > )
[P =0 [6(P) — £(05)] = 0 ((P) — £(0) = div fo p
The non-reduced Tate pairing of degree ¢ € N over k stems from monodromy:

ere:  El(k) x E(k)/[OE(k) — k*/(k*)"

) (P.[Q)) = for(@)
@Y Miller's algorithm:
O e Compute P — [{]P = 0, say using an addition chain P, 2P, ...,tEP)
— L pi 15(Q
, . [nj1P,[m;]P
§ @ Accumulate evaluated line functions: fy p(Q) = —2e
Q< /\% r][ 1Py fms 1P (@)
o/ /ip
]
s
X
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The role of monodromy
Torsion relation in E(k) Torsion relation in Pic®(FE)(k) Monodromy in Div?(E)

> > )
[P =0 [6(P) — £(05)] = 0 ((P) — £(0) = div fo p
The non-reduced Tate pairing of degree ¢ € N over k stems from monodromy:

ere:  El(k) x E(k)/[OE(k) — k*/(k*)"

Pl (@
%Y Miller’s algorithm: (1) = fer(Q)
AP

@\ e Compute P — [(]P = 0, say using an addition chain P,2P,. o)

@?))\ @ Accumulate evaluated line functions: f; p(Q H l[n] mJ]P(Q)
~~ pairing from the intermediate additions!
@X
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The role of monodromy
Torsion relation in E(k) Torsion relation in Pic®(FE)(k) Monodromy in Div?(E)
0P =0 T P -] =0 T UP) - 0g) = div fop
The non-reduced Tate pairing of degree ¢ € N over k stems from monodromy:

ere:  Bl(k) x E(k)/[0E(K) — & /(k*)"

(P.1Q)) )

QC? Y Miller’s algorithm:

@ e Compute P — [(]P = 0, say using an addition chain P 2P, . lz o)
- : . [”1 mJ]
—. @ Accumulate evaluated line functions: f

@/) S er(Q H Um;1 P, fm;1P(Q)

) ~> pairing from the intermediate additions!

i/ ip
Monodromy already appears in the Montgomery ladder alone:
QC x @ Start with Oz = (1:0) and P = (Xp : Zp)

X e Perform LADDER(P,{): get [(|]P = (Xyp :0) = (1:0)
~» Xyp is a monodromy factor.

U
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The role of monodromy
Torsion relation in E(k) Torsion relation in Pic®(FE)(k) Monodromy in Div?(E)
0P =0 T P -] =0 T UP) - 0g) = div fop
The non-reduced Tate pairing of degree ¢ € N over k stems from monodromy:

ere:  Bl(k) x E(k)/[0E(K) — & /(k*)"

(P.1Q)) )

QC? Y Miller’s algorithm:

@ e Compute P — [(]P = 0, say using an addition chain P 2P, . lz o)
- : . [”1 mJ]
—. @ Accumulate evaluated line functions: f

@/) S er(Q H Um;1 P, fm;1P(Q)

) ~> pairing from the intermediate additions!

o/ /ip
Monodromy already appears in the Montgomery ladder alone:
QC x @ Start with Oz = (1:0) and P = (Xp : Zp)

X e Perform LADDER(P,{): get [(|]P = (Xyp :0) = (1:0)
~» X,p is a monodromy factor. Projective coordinates carry meaning!

U
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Montgomery ladders almost compute pairings
P=(zp:1) € E[], Q:(Z‘Qil), P—Q:(Z‘P_Qil)
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Montgomery ladders almost compute pairings
PZ(.’L‘le)EE[f], Q:(l‘Qil), P—Q:(l‘p_Qtl)

Look at monodromy factors using ladders:

0p = (1,0)  3prLaboere,P@:P-Q) [P = (X¢p,0) differ by Ap = X¢p
Q= (zq,1) TP+ Q= (Xepr@, Zerrq) differ by A\g = Zipiq
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Montgomery ladders almost compute pairings
PZ(.’L‘le)EE[f], Q:(l‘Qil), P—Q:(l‘p_Qtl)

Look at monodromy factors using ladders:

0p = (1,0)  3prLaboere,P@:P-Q) [P = (X¢p,0) differ by Ap = X¢p
Q= (zq,1) TP+ Q= (Xepr@, Zerrq) differ by A\g = Zipiq

From this we get the Tate pairing!
Ao/Ap = er(P,Q)? - STUFF
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Montgomery ladders almost compute pairings
PZ(.’L‘le)EE[f], Q:(l‘Qil), P—Q:(l‘p_Qtl)

Look at monodromy factors using ladders:

0p = (1,0)  3prLaboere,P@:P-Q) [P = (X¢p,0) differ by Ap = X¢p
Q= (zq,1) TP+ Q= (Xepr@, Zerrq) differ by A\g = Zipiq

From this we get the Tate pairing! squared, + garbage
Ao/Ap = er(P,Q)? - STUFF
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Montgomery ladders almost compute pairings
P=(xp:1)€E}{], Q=(zg:1), P—-Q=(rp_g:1)
Look at monodromy factors using ladders:
0p = (1,0)  3prLapoer(e,PQ:P—Q) [LJP = (Xep,0) differ by A\p = Xyp
Q= (zq,1) P+ Q = (X¢pyq, Zeprq) differ by Ao = Zypyq
From this we get the Tate pairing! squared, + garbage
Ao/Ap = er(P,Q)? - STUFF
(4xP)Z-(—|£+1)
(4zp)t~t(d2g) (dup-q)™*
@ initial input coordinates

More precisely, STUFF = depends on3

@ bit representation of /.

3notation: —¢ = bitwise negation of the bit representation of ¢
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Montgomery ladders almost compute pairings
P=(xp:1)€E}{], Q=(zg:1), P—-Q=(rp_g:1)

Look at monodromy factors using ladders:
0p=(1,0)  sprLavoer(e,P,@iP—@) [P = (X¢p,0) differ by Ap = Xyp
Q = (zqg,1) P+ Q = (X¢pyq, Zeprq) differ by Ao = Zypyq
From this we get the Tate pairing! squared, + garbage

Ao/Ap = er(P,Q)? - STUFF

FIRVACTASY
(4xp)f'(ﬁe(:3zQ)‘(4xp_Q)ﬁé depends on3

@ initial input coordinates

More precisely, STUFF =

@ bit representation of /.

Solution: compute STUFF and divide it out...
or better: edit the LADDER to get rid of STUFF.

3notation: —¢ = bitwise negation of the bit representation of ¢
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Montgomery ladders compute pairings

Consider XADD(P,Q; P — Q) = (Xp+9, Zp+q)-
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Montgomery ladders compute pairings

Consider XADD(P,Q; P — Q) = (Xp+q, Zp+q)-

Modify into CADD: different projective scaling of the output (Xpi g, Zp+qQ)
Xprq =2Zpq(T+U),  Xpig =@Xpq) ' -(T+U),
Zpiq =Xpq(T-U). Zpiq = (4Zp-) ' - (T -U)*.
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Montgomery ladders compute pairings

Consider XADD(P,Q; P — Q) = (Xp+q, Zp+q)-
Modify into CADD: different projective scaling of the output (Xpi g, Zp+qQ)

Xprq =Zp-q(T+U), Xpig =(AXp o) - (T+U)?,
Zpiq =Xpq(T-U). Zpiq = (4Zp-) ' - (T -U)*.
Montgomery arithmetic using XDBL and the new CADD: cubical arithmetic.
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Montgomery ladders compute pairings

Consider XADD(P,Q; P — Q) = (Xp1+Q, Zpr+q)-
Modify into CADD: different projective scaling of the output (Xpi g, Zp+qQ)

Xprq =2Zpq (T+U)22, o Xpro = (4XPfQ)*11 : (T+U)§,
Zprq =Xpq(T-U)". Zprq =AZpq) -(T-U)".

Montgomery arithmetic using XDBL and the new CADD: cubical arithmetic.
Replace now CADD into the ladder.

Then CLADDER(Y, P,Q; P — Q) — ((P,4P+ Q) in (X, Z)-coordinates:
XQ/)\}; = Xor/Zip+q = eryu(P, Q)? without extra STUFF!
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Montgomery ladders compute pairings

Consider XADD(P,Q; P — Q) = (Xp1+Q, Zpr+q)-
Modify into CADD: different projective scaling of the output (Xpi g, Zp+qQ)

Xprq =2Zpq (T+U)22, o Xpro = (4XPfQ)*11 : (T+U)§,
Zprq =Xpq(T-U)". Zprq =AZpq) -(T-U)".

Montgomery arithmetic using XDBL and the new CADD: cubical arithmetic.
Replace now CADD into the ladder.

Then CLADDER(Y, P,Q; P — Q) — ((P,4P+ Q) in (X, Z)-coordinates:
XQ//\}; = Xor/Zip+q = eryu(P, Q)? without extra STUFF!

@ The square is not a problem when ¢ is odd v/
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Montgomery ladders compute pairings

Consider XADD(P,Q; P — Q) = (Xp1+Q, Zpr+q)-
Modify into CADD: different projective scaling of the output (Xpi g, Zp+qQ)

Xprq =2Zpq (T+U)22, o Xpro = (4XPfQ)*11 : (T+U)§,
Zprq =Xpq(T-U)". Zprq =AZpq) -(T-U)".

Montgomery arithmetic using XDBL and the new CADD: cubical arithmetic.
Replace now CADD into the ladder.

Then CLADDER(Y, P,Q; P — Q) — ((P,4P+ Q) in (X, Z)-coordinates:
XQ/)\}; = Xor/Zip+q = eryu(P, Q)? without extra STUFF!

@ The square is not a problem when ¢ is odd v/
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Montgomery ladders compute pairings

Consider XADD(P, Q; P — Q) = (XP+Q, ZP+Q).
Modify into CADD: different projective scaling of the output (Xpiq, Zp4q)

Xprq =2Zpq(T+U),  Xpig =@Xpg) ' -(T+U)?,
Zpiq =Xpq(T-U). Zpiq = (4Zp-q) ' - (T -U)%.
Montgomery arithmetic using XDBL and the new CADD: cubical arithmetic.
Replace now CADD into the ladder.
Then CLADDER(Y, P,Q; P — Q) — ((P,/P+ Q) in (X, Z)-coordinates:
XQ/)\}; = Xor/Zip+q = eryu(P, Q)? without extra STUFF!

@ The square is not a problem when £is odd v/ even — small trick to avoid the square
@ Just minor tweak needed in the conversion XADD — cADD

~+ easy optimized, constant-time implementation.*

*Rust and Sagemath libraries provided at https://github.com/GiacomoPope/cubical-pairings
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Montgomery ladders compute pairings

Consider XADD(P, Q; P — Q) = (XP+Q, ZP+Q).

Modify into CADD: different projective scaling of the output (Xpiq, Zp4q)
Xprq =2Zpq(T+U),  Xpig =@Xpg) ' -(T+U)?,
Zpiq =Xpq(T-U). Zpiq = (4Zp-q) ' - (T -U)%.

Montgomery arithmetic using XDBL and the new CADD: cubical arithmetic.

Replace now CADD into the ladder.

Then CLADDER(Y, P,Q; P — Q) — ((P,/P+ Q) in (X, Z)-coordinates:

XQ/)\}; = Xor/Zip+q = eryu(P, Q)? without extra STUFF!

@ The square is not a problem when £is odd v/ even — small trick to avoid the square

@ Just minor tweak needed in the conversion XADD — cADD
~+ easy optimized, constant-time implementation.*

@ Inverses can be pre-computed and batched: only one inversion per pairing

*Rust and Sagemath libraries provided at https://github.com/GiacomoPope/cubical-pairings
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Cubical arithmetic

It seems: there's a preferred projective scaling in the output of XADD. Not a coincidence!
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Cubical arithmetic

It seems: there's a preferred projective scaling in the output of XADD. Not a coincidence!
Algebraic statement:

@ Projective coordinates X, Z are global sections of a line bundle £
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Cubical arithmetic
It seems: there's a preferred projective scaling in the output of XADD. Not a coincidence!
Algebraic statement:
@ Projective coordinates X, Z are global sections of a line bundle £
@ There is a canonical isomorphism of line bundles
th LOtp LR tp LB 4 pip L 2 th p LOth p LOth  p LOL
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Cubical arithmetic

It seems: there's a preferred projective scaling in the output of XADD. Not a coincidence!
Algebraic statement:

@ Projective coordinates X, Z are global sections of a line bundle £

@ There is a canonical isomorphism of line bundles

th LOtp LR tp LB 4 pip L 2 th p LOth p LOth  p LOL

P+ P P+P+ P
P3 P+ P

Py P+ P
0
E P,

Alessandro Sferlazza (TUM)
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Cubical arithmetic
It seems: there's a preferred projective scaling in the output of XADD. Not a coincidence!
Algebraic statement:
@ Projective coordinates X, Z are global sections of a line bundle £
@ There is a canonical isomorphism of line bundles
tp LR LRt LRp pyip L Zth L@ th  p Lt p L& L

Read ¢t L as: choose scaling of coordinates Xp, Zp

P+ P P+P+ P
P3 P+ P

Py P+ P
0
E P,
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Cubical arithmetic

It seems: there's a preferred projective scaling in the output of XADD. Not a coincidence!

Algebraic statement:

@ Projective coordinates X, Z are global sections of a line bundle £

@ There is a canonical isomorphism of line bundles
th LROtp, LROtp LRt v p p L2t  p LRtp  pLRtp  pLRL

P+ P P+P+ P
P3 P+ Ps

Py P+ Py
0
E P,

Alessandro Sferlazza (TUM)

Read ¢t L as: choose scaling of coordinates Xp, Zp

Given coordinates of 7 vertices,
isomorphism above = canonical choice for the 8th
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Cubical arithmetic

It seems: there's a preferred projective scaling in the output of XADD. Not a coincidence!

Algebraic statement:

@ Projective coordinates X, Z are global sections of a line bundle £

@ There is a canonical isomorphism of line bundles
th LROtp, LROtp LRt v p p L2t  p LRtp  pLRtp  pLRL

P, + P3

P+ P+ P3

Py

P

P -

I P3
P+ P

Or

Py

Alessandro Sferlazza (TUM)

Read ¢t L as: choose scaling of coordinates Xp, Zp

Given coordinates of 7 vertices,
isomorphism above = canonical choice for the 8th

We get CADD (and ¢cDBL) as special case:
Let (P, Py, P3) = (P,Q, —Q). The vertices

(Pa QJ _Qa P7 07 P+Q7 P_Q7 O)
Fixing P,Q, P — Q we get P + @ uniquely!
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Cubical arithmetic as a way to get Miller functions
Consider the projective coordinates X, Z.

Alessandro Sferlazza (TUM) Ladders compute pairings
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Consider the projective coordinates X, Z.

Warning: they're global sections of a line bundle, not rational functions in k(E).
The rational (meromorphic) functions corresp. to X, Z are x, 1 respectively.
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Cubical arithmetic as a way to get Miller functions
Consider the projective coordinates X, Z.

Warning: they're global sections of a line bundle, not rational functions in k(E).
The rational (meromorphic) functions corresp. to X, Z are x, 1 respectively.

However, see 0 = (1 : 0). The coordinate Z has a zero at O (with multiplicity!)

Global sections have a zero locus. There is a reasonable notion of divisor of zeroes:

divo(Z) =2(05),  dive(Z(-+ P)) = 2(~P).
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Cubical arithmetic as a way to get Miller functions
Consider the projective coordinates X, Z.

Warning: they're global sections of a line bundle, not rational functions in k(E).
The rational (meromorphic) functions corresp. to X, Z are z, 1 respectively.

However, see O = (1: 0). The coordinate Z has a zero at Og (with multiplicity!)

Global sections have a zero locus. There is a reasonable notion of divisor of zeroes:
divo(Z) = 2(0p), divo(Z(- + P)) = 2(—P).

Z(+P) - Z(+ By)

Z(-+ Q1) Z(-+ Qm)
where the P;, ); are all compatible via the cubical arithmetic.

Idea: compute some ratio g(-) = (in gen. not a function in k(E))
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Cubical arithmetic as a way to get Miller functions
Consider the projective coordinates X, Z.

Warning: they're global sections of a line bundle, not rational functions in k(E).
The rational (meromorphic) functions corresp. to X, Z are z, 1 respectively.

However, see O = (1: 0). The coordinate Z has a zero at Og (with multiplicity!)
Global sections have a zero locus. There is a reasonable notion of divisor of zeroes:
divo(Z) = 2(0p), divo(Z(- + P)) = 2(—P).

Z(-+P)--Z(-+ Py)

Z(-+ Q1) Z(-+ Qm)
where the P;, ); are all compatible via the cubical arithmetic.

Idea: compute some ratio g(-) = (in gen. not a function in k(E))

When the P;, Q); are chosen carefully, we can get a rational function g € k(E), satisfying
divg=2(—=P))+ -+ 2(—PFPp) —2(—Q1) — - — 2(—Qn)
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Cubical arithmetic as a way to get Miller functions
Consider the projective coordinates X, Z.

Warning: they're global sections of a line bundle, not rational functions in k(E).
The rational (meromorphic) functions corresp. to X, Z are z, 1 respectively.

However, see O = (1: 0). The coordinate Z has a zero at Og (with multiplicity!)

Global sections have a zero locus. There is a reasonable notion of divisor of zeroes:
divo(Z) = 2(0p), divo(Z(- + P)) = 2(—P).

Z(+P) - Z(+ By)

Z(-+ Q1) Z(-+ Qm)
where the P;, ); are all compatible via the cubical arithmetic.

Idea: compute some ratio g(-) =

(in gen. not a function in k(E))

When the P;, Q); are chosen carefully, we can get a rational function g € k(E), satisfying
divg =2(=P1) + - +2(=Fpn) —2(=Q1) — - — 2(—Qm)
Z(R+(P)Z(R)!
Z(p)t
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Miller fns: P € E[¢]. Then fyp: R —

has divisor 2(£(0) — ¢(—P))



End of the theory!

Some applications now



Application: multi-dimensional discrete logarithms

o Consider a torsion basis (P, Q) = E[N], with N smooth.
o Let R € E[N].
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Application: multi-dimensional discrete logarithms

o Consider a torsion basis (P, Q) = E[N], with N smooth.
o Let R € E[N]. DLog problem: recover (a,b) s.t. R = [a]P + [b]Q.
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Application: multi-dimensional discrete logarithms

o Consider a torsion basis (P, Q) = E[N], with N smooth.
o Let R € E[N]. DLog problem: recover (a,b) s.t. R = [a]P + [b]Q.
How to solve? Weil pairing:  en: E[N] x E[N] — un.
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Application: multi-dimensional discrete logarithms

o Consider a torsion basis (P, Q) = E[N], with N smooth.
o Let R € E[N]. DLog problem: recover (a,b) s.t. R = [a]P + [b]Q.
How to solve? Weil pairing:  en: E[N] x E[N] — un.
e Alternating: e(P,P) =1
o Non-degenerate: if P has order N, there is @ s.t. e(P, Q) has order N.
e(P,Q) has order N <= (P,Q) = E[N]
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Application: multi-dimensional discrete logarithms

o Consider a torsion basis (P, Q) = E[N], with N smooth.
o Let R € E[N]. DLog problem: recover (a,b) s.t. R = [a]P + [b]Q.
How to solve? Weil pairing:  en: E[N] x E[N] — un.
e Alternating: e(P,P) =1
o Non-degenerate: if P has order N, there is @ s.t. e(P, Q) has order N.
e(P,Q) has order N <= (P, Q) = E[N]

In many isogeny applications, use Tate pairing: similar properties, faster to compute.
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Application: multi-dimensional discrete logarithms

o Consider a torsion basis (P, Q) = E[N], with N smooth.
o Let R € E[N]. DLog problem: recover (a,b) s.t. R = [a]P + [b]Q.
How to solve? Weil pairing:  en: E[N] x E[N] — un.
e Alternating: e(P,P) =1
o Non-degenerate: if P has order N, there is @ s.t. e(P, Q) has order N.
e(P,Q) has order N <= (P, Q) = E[N]

In many isogeny applications, use Tate pairing: similar properties, faster to compute.

Some details:
G =en(P,Q) has order N
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Application: multi-dimensional discrete logarithms

o Consider a torsion basis (P, Q) = E[N], with N smooth.
o Let R € E[N]. DLog problem: recover (a,b) s.t. R = [a]P + [b]Q.
How to solve? Weil pairing:  en: E[N] x E[N] — un.
e Alternating: e(P,P) =1
o Non-degenerate: if P has order N, there is @ s.t. e(P, Q) has order N.
e(P,Q) has order N <= (P, Q) = E[N]

In many isogeny applications, use Tate pairing: similar properties, faster to compute.

Some details:
G =en(P,Q) has order N

h = en(R, P) = en(lalP + [B1Q, P) = G
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Application: multi-dimensional discrete logarithms

o Consider a torsion basis (P, Q) = E[N], with N smooth.
o Let R € E[N]. DLog problem: recover (a,b) s.t. R = [a]P + [b]Q.
How to solve? Weil pairing:  en: E[N] x E[N] — un.
e Alternating: e(P,P) =1
o Non-degenerate: if P has order N, there is @ s.t. e(P, Q) has order N.
e(P,Q) has order N <= (P, Q) = E[N]

In many isogeny applications, use Tate pairing: similar properties, faster to compute.

Some details:
G =en(P,Q) has order N

hy = en(R, P) = ex(la] P+ D)Q, P) = ¢
ha = en(R, Q) = en([a]P + [1]Q, Q) = (¢
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Application: multi-dimensional discrete logarithms

o Consider a torsion basis (P, Q) = E[N], with N smooth.
o Let R € E[N]. DLog problem: recover (a,b) s.t. R = [a]P + [b]Q.
How to solve? Weil pairing:  en: E[N] x E[N] — un.
e Alternating: e(P,P) =1
o Non-degenerate: if P has order N, there is @ s.t. e(P, Q) has order N.
e(P,Q) has order N <= (P, Q) = E[N]

In many isogeny applications, use Tate pairing: similar properties, faster to compute.
Some details:
Co=-en(P,Q)  hasorder N b — Dlog in /i,
hy = en(R, P) = en(la|P + [b]Q, P) = (, much easier
ha = en(R, Q) = en([a]P + [1]Q, Q) = (¢
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Application: multi-dimensional discrete logarithms

e Consider a torsion basis (P, Q) = E[N], with N smooth.
o Let R € E[N]. DLog problem: recover (a,b) s.t. R = [a]P + [b]Q.
How to solve? Weil pairing:  en: E[N] x E[N] — un.
e Alternating: e(P,P) =1
o Non-degenerate: if P has order N, there is ) s.t. e(P,Q) has order N.
e(P,Q) has order N <= (P, Q) = E[N]
In many isogeny applications, use Tate pairing: similar properties, faster to compute.
Some details:
o =en(P,Q) has order N ~ DLog in iy,
hy = en(R, P) = en(la]P + [0]Q, P) = ¢;° much easier
ha = en(R,Q) = ex([alP + 110, Q) =
Use examples:  Point compression in SQIsignHD: ~ 40% cost reduction
Decryption in (Q)FESTA, HD protocols...
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Further applications: torsion bases, supersingularity testing

Weil pairing:  ew,n: E[N] x E[N] = pn.
o Non-degenerate = ¢(P, Q) has order N iff P, are a torsion basis.
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Further applications: torsion bases, supersingularity testing

Weil pairing:  ew,n: E[N] x E[N] = pn.
o Non-degenerate = ¢(P, Q) has order N iff P, are a torsion basis.
Application #1: Torsion basis generation for very composite N =[], ¢;

@ Sample random points P, Q
@ Test they form a torsion basis by testing the order of (P, Q) € un-.
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o Non-degenerate = ¢(P, Q) has order N iff P, are a torsion basis.
Application #1: Torsion basis generation for very composite N =[], ¢;

@ Sample random points P, Q
@ Test they form a torsion basis by testing the order of (P, Q) € un-.
~ Order testing in pn: much faster than trial multiplication P +— [N/(;]P v
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Further applications: torsion bases, supersingularity testing

Weil pairing:  ew,n: E[N] x E[N] = pn.
o Non-degenerate = ¢(P, Q) has order N iff P, are a torsion basis.

Application #1: Torsion basis generation for very composite N =[], ¢;
@ Sample random points P, Q

@ Test they form a torsion basis by testing the order of (P, Q) € un-.
~ Order testing in pn: much faster than trial multiplication P +— [N/(;]P v
Application #2: Supersingularity verification
o Let E/F,> be a supersingular curve, say E(F,2) = (Z/(p + 1)Z)%.
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Further applications: torsion bases, supersingularity testing

Weil pairing:  ew,n: E[N] x E[N] = pn.
o Non-degenerate = ¢(P, Q) has order N iff P, (@ are a torsion basis.

Application #1: Torsion basis generation for very composite N =[], ¢;
@ Sample random points P, Q

@ Test they form a torsion basis by testing the order of (P, Q) € un-.
~ Order testing in pn: much faster than trial multiplication P +— [N/(;]P v
Application #2: Supersingularity verification
o Let E/F,> be a supersingular curve, say E(F,2) = (Z/(p + 1)Z)%.
@ Try to generate a (p + 1)-torsion basis. If SUCCESS, return "E is supersingular”.
o FAIL if we find P with [p + 1]P # 0. Retry few times otherwise.
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Further applications: torsion bases, supersingularity testing

Weil pairing:  ew,n: E[N] x E[N] = pn.
o Non-degenerate = ¢(P, Q) has order N iff P, (@ are a torsion basis.

Application #1: Torsion basis generation for very composite N =[], ¢;
@ Sample random points P, Q

@ Test they form a torsion basis by testing the order of (P, Q) € un-.
~ Order testing in pn: much faster than trial multiplication P +— [N/(;]P v
Application #2: Supersingularity verification
o Let E/F,> be a supersingular curve, say E(F,2) = (Z/(p + 1)Z)%.
@ Try to generate a (p + 1)-torsion basis. If SUCCESS, return "E is supersingular”.
o FAIL if we find P with [p + 1]P # 0. Retry few times otherwise.
~~ Probability of false negatives: 0. Probability of false positives: negligible. v
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Further applications: torsion bases, supersingularity testing

Weil pairing:  ew,n: E[N] x E[N] = pn.

o Non-degenerate = ¢(P, Q) has order N iff P, (@ are a torsion basis.
Application #1: Torsion basis generation for very composite N =[], ¢;

@ Sample random points P, Q

@ Test they form a torsion basis by testing the order of (P, Q) € un-.
~ Order testing in pn: much faster than trial multiplication P +— [N/(;]P v
Application #2: Supersingularity verification
o Let E/F,> be a supersingular curve, say E(F,2) = (Z/(p + 1)Z)%.
@ Try to generate a (p + 1)-torsion basis. If SUCCESS, return "E is supersingular”.
o FAIL if we find P with [p + 1]P # 0. Retry few times otherwise.
~~ Probability of false negatives: 0. Probability of false positives: negligible. v
Use-case example: CSIDH public key validation: ~ 7% cost reduction.
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Further directions

The theory of cubical arithmetic and biextensions applies much more generally:

@ Other pairings (e.g., Ate pairing and variants):
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The theory of cubical arithmetic and biextensions applies much more generally:
@ Other pairings (e.g., Ate pairing and variants):
~~ optimizations in pairing-based crypto, see [LRZZ25]°
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The theory of cubical arithmetic and biextensions applies much more generally:

@ Other pairings (e.g., Ate pairing and variants):
~~ optimizations in pairing-based crypto, see [LRZZ25]°
@ Other curve models: Theta, Weierstrass, Edwards, ...
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The theory of cubical arithmetic and biextensions applies much more generally:
@ Other pairings (e.g., Ate pairing and variants):
~~ optimizations in pairing-based crypto, see [LRZZ25]°
@ Other curve models: Theta, Weierstrass, Edwards, ...

@ Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
~~ Cubical pairings already present in AVisogenies in Magma.
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Further directions

The theory of cubical arithmetic and biextensions applies much more generally:

@ Other pairings (e.g., Ate pairing and variants):
~~ optimizations in pairing-based crypto, see [LRZZ25]°

@ Other curve models: Theta, Weierstrass, Edwards, ...

@ Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
~~ Cubical pairings already present in AVisogenies in Magma.
~~ We have some initial Sagemath implementation.
~> Improve it and integrate it in the Sagemath code: coding sprints!
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Further directions

The theory of cubical arithmetic and biextensions applies much more generally:
@ Other pairings (e.g., Ate pairing and variants):
~~ optimizations in pairing-based crypto, see [LRZZ25]°
@ Other curve models: Theta, Weierstrass, Edwards, . ..

@ Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
~~ Cubical pairings already present in AVisogenies in Magma.
~~ We have some initial Sagemath implementation.
~> Improve it and integrate it in the Sagemath code: coding sprints!

Thank you for listening! Questions?

®Lin, Robert, Zhao, Zheng, Biextensions in Pairing-based Cryptography, eprint.iacr.org/2025/670
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Even-degree pairings
Consider an even integer ¢ = 2m.
P e E[lY(k), Q€ E(k), CLADDER(Y, P,Q,P — Q) — (P, {P+Q
We can get the squared Tate pairing:  Ap/Ag = Xep/Zip+q = eryu(P, Q)?
The pairing has order dividing £ = 2m ~- the square loses one bit of information.
Step 1: only compute ladder of order m = ¢/2.
CLADDER(m, P,Q,P — Q) — mP, mP + Q

Step 2: Linear translations. T'= mP is a point of order 2: on the Kummer line,
translation by 7" induces an involution. It acts linearly on coordinates, for example

T=(0:1). Tx(Xp,Zp)=P+T=(Zp,Xp)
TI(AB)#(Ol) T*(XP,ZP):P+T:(AXP—BZP,AZP—BXP)

mP + T is projectively = Og ~~ monodromy factor A

Step 3: Monodromy. (mP + Q) + T is projectively = @  ~~ monodromy factor XQ

Ap/Ag = me+T/Z(mP+Q)+T =er(P, Q) without the square!



Cubical arithmetic in different models

| cDBL | cADD

Montgomery | 3M 2S | 3M 2S
Theta 3M 2S | 3M 3S
Weierstrass | 5M 4S | 8M 2S



