
Montgomery ladders already compute pairings

Alessandro Sferlazza
joint work with: G. Pope, K. Reijnders, D. Robert, B. Smith

Technical University of Munich

29 April 2025,
SQIparty Workshop, Lleida

Main character: pairings of elliptic curves
Pairings are bilinear maps from subgroups/quotients of elliptic curves with nice extra properties

eℓ : G1 ×G2 → µℓ ⊆ k×

(P,Q) 7→ eℓ(P,Q)
ℓ ∈ N

Countless uses in crypto:

curve-based and pairing-based cryptography ⇝ highly optimized parameters:
▶ field characteristic p = char k with fast arithmetic
▶ P,Q on a fixed curve E with small/nice coefficients

isogeny-based crypto:
▶ parameters p,E already constrained (e.g. for rational torsion)

⇝ need fast generic pairing.

Cost of generic pairings per bit of ℓ:
Tate pairing Weil pairing

State of the art [CLZ24] 11.3M + 7.7S + 20.7A
2 · Tate pairing

[Rob24] ⇝ our work 9M + 6S + 16A

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 1 / 10

Main character: pairings of elliptic curves
Pairings are bilinear maps from subgroups/quotients of elliptic curves with nice extra properties

eℓ : G1 ×G2 → µℓ ⊆ k×

(P,Q) 7→ eℓ(P,Q)
ℓ ∈ N

Countless uses in crypto:

curve-based and pairing-based cryptography

⇝ highly optimized parameters:
▶ field characteristic p = char k with fast arithmetic
▶ P,Q on a fixed curve E with small/nice coefficients

isogeny-based crypto:
▶ parameters p,E already constrained (e.g. for rational torsion)

⇝ need fast generic pairing.

Cost of generic pairings per bit of ℓ:
Tate pairing Weil pairing

State of the art [CLZ24] 11.3M + 7.7S + 20.7A
2 · Tate pairing

[Rob24] ⇝ our work 9M + 6S + 16A

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 1 / 10

Main character: pairings of elliptic curves
Pairings are bilinear maps from subgroups/quotients of elliptic curves with nice extra properties

eℓ : G1 ×G2 → µℓ ⊆ k×

(P,Q) 7→ eℓ(P,Q)
ℓ ∈ N

Countless uses in crypto:

curve-based and pairing-based cryptography ⇝ highly optimized parameters:
▶ field characteristic p = char k with fast arithmetic
▶ P,Q on a fixed curve E with small/nice coefficients

isogeny-based crypto:
▶ parameters p,E already constrained (e.g. for rational torsion)

⇝ need fast generic pairing.

Cost of generic pairings per bit of ℓ:
Tate pairing Weil pairing

State of the art [CLZ24] 11.3M + 7.7S + 20.7A
2 · Tate pairing

[Rob24] ⇝ our work 9M + 6S + 16A

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 1 / 10

Main character: pairings of elliptic curves
Pairings are bilinear maps from subgroups/quotients of elliptic curves with nice extra properties

eℓ : G1 ×G2 → µℓ ⊆ k×

(P,Q) 7→ eℓ(P,Q)
ℓ ∈ N

Countless uses in crypto:

curve-based and pairing-based cryptography ⇝ highly optimized parameters:
▶ field characteristic p = char k with fast arithmetic
▶ P,Q on a fixed curve E with small/nice coefficients

isogeny-based crypto:
▶ parameters p,E already constrained (e.g. for rational torsion)

⇝ need fast generic pairing.

Cost of generic pairings per bit of ℓ:
Tate pairing Weil pairing

State of the art [CLZ24] 11.3M + 7.7S + 20.7A
2 · Tate pairing

[Rob24] ⇝ our work 9M + 6S + 16A

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 1 / 10

Main character: pairings of elliptic curves
Pairings are bilinear maps from subgroups/quotients of elliptic curves with nice extra properties

eℓ : G1 ×G2 → µℓ ⊆ k×

(P,Q) 7→ eℓ(P,Q)
ℓ ∈ N

Countless uses in crypto:

curve-based and pairing-based cryptography ⇝ highly optimized parameters:
▶ field characteristic p = char k with fast arithmetic
▶ P,Q on a fixed curve E with small/nice coefficients

isogeny-based crypto:
▶ parameters p,E already constrained (e.g. for rational torsion)

⇝ need fast generic pairing.

Cost of generic pairings per bit of ℓ:
Tate pairing Weil pairing

State of the art [CLZ24] 11.3M + 7.7S + 20.7A
2 · Tate pairing

[Rob24] ⇝ our work 9M + 6S + 16A

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 1 / 10

Main character: pairings of elliptic curves
Pairings are bilinear maps from subgroups/quotients of elliptic curves with nice extra properties

eℓ : G1 ×G2 → µℓ ⊆ k×

(P,Q) 7→ eℓ(P,Q)
ℓ ∈ N

Countless uses in crypto:
curve-based and pairing-based cryptography ⇝ highly optimized parameters:

▶ field characteristic p = char k with fast arithmetic
▶ P,Q on a fixed curve E with small/nice coefficients

isogeny-based crypto:
▶ parameters p,E already constrained (e.g. for rational torsion)

⇝ need fast generic pairing.

Cost of generic pairings per bit of ℓ:
Tate pairing Weil pairing

State of the art [CLZ24]1 11.3M + 7.7S + 20.7A
2 · Tate pairing

[Rob24]2 ⇝ our work 9M + 6S + 16A
1Cai, Lin, Zhao, Pairing Optimizations for Isogeny-based Cryptosystems, eprint.iacr.org/2024/575
2Robert, Fast pairings via biextensions and cubical arithmetic, eprint.iacr.org/2024/517

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 1 / 10

eprint.iacr.org/2024/575
eprint.iacr.org/2024/517

Montgomery ladder

Computes scalar multiplication P 7→ [ℓ]P
using x-only arithmetic: P = (XP : ZP)

Forgetting about Y , sign ambiguity ±P ⇝
can’t add P +Q with the usual group law.

On E/± we have two operations

xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine them into a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalizable to a 3PtLadder with offset Q.
Need input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

Q− P

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDPxDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 2 / 10

Montgomery ladder

Computes scalar multiplication P 7→ [ℓ]P
using x-only arithmetic: P = (XP : ZP)

Forgetting about Y , sign ambiguity ±P ⇝
can’t add P +Q with the usual group law.

On E/± we have two operations

xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine them into a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalizable to a 3PtLadder with offset Q.
Need input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

Q− P

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDPxDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 2 / 10

Montgomery ladder

Computes scalar multiplication P 7→ [ℓ]P
using x-only arithmetic: P = (XP : ZP)

Forgetting about Y , sign ambiguity ±P ⇝
can’t add P +Q with the usual group law.

On E/± we have two operations

xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine them into a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalizable to a 3PtLadder with offset Q.
Need input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P

[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

Q− P

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDPxDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 2 / 10

Montgomery ladder

Computes scalar multiplication P 7→ [ℓ]P
using x-only arithmetic: P = (XP : ZP)

Forgetting about Y , sign ambiguity ±P ⇝
can’t add P +Q with the usual group law.

On E/± we have two operations

xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine them into a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalizable to a 3PtLadder with offset Q.
Need input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

Q− P

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDPxDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 2 / 10

Montgomery ladder

Computes scalar multiplication P 7→ [ℓ]P
using x-only arithmetic: P = (XP : ZP)

Forgetting about Y , sign ambiguity ±P ⇝
can’t add P +Q with the usual group law.

On E/± we have two operations

xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine them into a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalizable to a 3PtLadder with offset Q.
Need input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

Q− P

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDPxDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 2 / 10

Montgomery ladder

Computes scalar multiplication P 7→ [ℓ]P
using x-only arithmetic: P = (XP : ZP)

Forgetting about Y , sign ambiguity ±P ⇝
can’t add P +Q with the usual group law.

On E/± we have two operations

xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine them into a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalizable to a 3PtLadder with offset Q.
Need input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P

[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

Q− P

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−Q

xDBL xADDP

xDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 2 / 10

Montgomery ladder

Computes scalar multiplication P 7→ [ℓ]P
using x-only arithmetic: P = (XP : ZP)

Forgetting about Y , sign ambiguity ±P ⇝
can’t add P +Q with the usual group law.

On E/± we have two operations

xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine them into a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalizable to a 3PtLadder with offset Q.
Need input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P

[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

Q− P

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDP

xDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 2 / 10

Montgomery ladder

Computes scalar multiplication P 7→ [ℓ]P
using x-only arithmetic: P = (XP : ZP)

Forgetting about Y , sign ambiguity ±P ⇝
can’t add P +Q with the usual group law.

On E/± we have two operations

xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine them into a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalizable to a 3PtLadder with offset Q.
Need input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P

[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

Q− P

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−Q

xDBL xADDP

xDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 2 / 10

Montgomery ladder

Computes scalar multiplication P 7→ [ℓ]P
using x-only arithmetic: P = (XP : ZP)

Forgetting about Y , sign ambiguity ±P ⇝
can’t add P +Q with the usual group law.

On E/± we have two operations

xDBL : P 7→ [2]P

xADD : (P1, P2;P1 − P2) 7→ P1 + P2

Combine them into a

Ladder : (ℓ, P) 7→ ([ℓ]P, [ℓ+ 1]P).

Generalizable to a 3PtLadder with offset Q.
Need input ±(P −Q).

0E P

P 2P

[n]P [n+ 1]P

.

[2n]P [2n+ 1]P

[2n+ 1]P [2n+ 2]P

[ℓ]P [ℓ+ 1]P

.

Q

Q− P

P +Q

[n]P +Q

[ℓ]P +Q

. . .

. . .

[2n]P +Q

xADDP−QxDBL xADDP

xDBLxADDP

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 2 / 10

The role of monodromy

Torsion relation in E(k)

[ℓ]P = 0
↔

Torsion relation in Pic0(E)(k)[
ℓ(P)− ℓ(0E)

]
= 0

↔
Monodromy in Div0(E)

ℓ(P)− ℓ(0E) = div fℓ,P

The non-reduced Tate pairing of degree ℓ ∈ N over k stems from monodromy:

eT,ℓ : E[ℓ](k)× E(k)/[ℓ]E(k) → k×/(k×)ℓ

(P, [Q]) 7→ fℓ,P (Q)
Miller’s algorithm:

Compute P 7→ [ℓ]P = 0, say using an addition chain P, 2P, ..., ℓP

Accumulate evaluated line functions: fℓ,P (Q) =
∏
j

l[nj]P,[mj]P (Q)

l[mj]P,[mj]P (Q)
⇝ pairing from the intermediate additions!

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP)

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)
⇝ XℓP is a monodromy factor. Projective coordinates carry meaning!

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 3 / 10

The role of monodromy
Torsion relation in E(k)

[ℓ]P = 0
↔

Torsion relation in Pic0(E)(k)[
ℓ(P)− ℓ(0E)

]
= 0

↔
Monodromy in Div0(E)

ℓ(P)− ℓ(0E) = div fℓ,P

The non-reduced Tate pairing of degree ℓ ∈ N over k stems from monodromy:

eT,ℓ : E[ℓ](k)× E(k)/[ℓ]E(k) → k×/(k×)ℓ

(P, [Q]) 7→ fℓ,P (Q)
Miller’s algorithm:

Compute P 7→ [ℓ]P = 0, say using an addition chain P, 2P, ..., ℓP

Accumulate evaluated line functions: fℓ,P (Q) =
∏
j

l[nj]P,[mj]P (Q)

l[mj]P,[mj]P (Q)
⇝ pairing from the intermediate additions!

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP)

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)
⇝ XℓP is a monodromy factor. Projective coordinates carry meaning!

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 3 / 10

The role of monodromy
Torsion relation in E(k)

[ℓ]P = 0
↔

Torsion relation in Pic0(E)(k)[
ℓ(P)− ℓ(0E)

]
= 0

↔
Monodromy in Div0(E)

ℓ(P)− ℓ(0E) = div fℓ,P

The non-reduced Tate pairing of degree ℓ ∈ N over k stems from monodromy:

eT,ℓ : E[ℓ](k)× E(k)/[ℓ]E(k) → k×/(k×)ℓ

(P, [Q]) 7→ fℓ,P (Q)

Miller’s algorithm:

Compute P 7→ [ℓ]P = 0, say using an addition chain P, 2P, ..., ℓP

Accumulate evaluated line functions: fℓ,P (Q) =
∏
j

l[nj]P,[mj]P (Q)

l[mj]P,[mj]P (Q)
⇝ pairing from the intermediate additions!

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP)

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)
⇝ XℓP is a monodromy factor. Projective coordinates carry meaning!

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 3 / 10

The role of monodromy
Torsion relation in E(k)

[ℓ]P = 0
↔

Torsion relation in Pic0(E)(k)[
ℓ(P)− ℓ(0E)

]
= 0

↔
Monodromy in Div0(E)

ℓ(P)− ℓ(0E) = div fℓ,P

The non-reduced Tate pairing of degree ℓ ∈ N over k stems from monodromy:

eT,ℓ : E[ℓ](k)× E(k)/[ℓ]E(k) → k×/(k×)ℓ

(P, [Q]) 7→ fℓ,P (Q)
Miller’s algorithm:

Compute P 7→ [ℓ]P = 0, say using an addition chain P, 2P, ..., ℓP

Accumulate evaluated line functions: fℓ,P (Q) =
∏
j

l[nj]P,[mj]P (Q)

l[mj]P,[mj]P (Q)
⇝ pairing from the intermediate additions!

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP)

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)
⇝ XℓP is a monodromy factor. Projective coordinates carry meaning!

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 3 / 10

The role of monodromy
Torsion relation in E(k)

[ℓ]P = 0
↔

Torsion relation in Pic0(E)(k)[
ℓ(P)− ℓ(0E)

]
= 0

↔
Monodromy in Div0(E)

ℓ(P)− ℓ(0E) = div fℓ,P

The non-reduced Tate pairing of degree ℓ ∈ N over k stems from monodromy:

eT,ℓ : E[ℓ](k)× E(k)/[ℓ]E(k) → k×/(k×)ℓ

(P, [Q]) 7→ fℓ,P (Q)
Miller’s algorithm:

Compute P 7→ [ℓ]P = 0, say using an addition chain P, 2P, ..., ℓP

Accumulate evaluated line functions: fℓ,P (Q) =
∏
j

l[nj]P,[mj]P (Q)

l[mj]P,[mj]P (Q)

⇝ pairing from the intermediate additions!

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP)

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)
⇝ XℓP is a monodromy factor. Projective coordinates carry meaning!

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 3 / 10

The role of monodromy
Torsion relation in E(k)

[ℓ]P = 0
↔

Torsion relation in Pic0(E)(k)[
ℓ(P)− ℓ(0E)

]
= 0

↔
Monodromy in Div0(E)

ℓ(P)− ℓ(0E) = div fℓ,P

The non-reduced Tate pairing of degree ℓ ∈ N over k stems from monodromy:

eT,ℓ : E[ℓ](k)× E(k)/[ℓ]E(k) → k×/(k×)ℓ

(P, [Q]) 7→ fℓ,P (Q)
Miller’s algorithm:

Compute P 7→ [ℓ]P = 0, say using an addition chain P, 2P, ..., ℓP

Accumulate evaluated line functions: fℓ,P (Q) =
∏
j

l[nj]P,[mj]P (Q)

l[mj]P,[mj]P (Q)
⇝ pairing from the intermediate additions!

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP)

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)
⇝ XℓP is a monodromy factor. Projective coordinates carry meaning!

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 3 / 10

The role of monodromy
Torsion relation in E(k)

[ℓ]P = 0
↔

Torsion relation in Pic0(E)(k)[
ℓ(P)− ℓ(0E)

]
= 0

↔
Monodromy in Div0(E)

ℓ(P)− ℓ(0E) = div fℓ,P

The non-reduced Tate pairing of degree ℓ ∈ N over k stems from monodromy:

eT,ℓ : E[ℓ](k)× E(k)/[ℓ]E(k) → k×/(k×)ℓ

(P, [Q]) 7→ fℓ,P (Q)
Miller’s algorithm:

Compute P 7→ [ℓ]P = 0, say using an addition chain P, 2P, ..., ℓP

Accumulate evaluated line functions: fℓ,P (Q) =
∏
j

l[nj]P,[mj]P (Q)

l[mj]P,[mj]P (Q)
⇝ pairing from the intermediate additions!

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP)

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)
⇝ XℓP is a monodromy factor.

Projective coordinates carry meaning!

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 3 / 10

The role of monodromy
Torsion relation in E(k)

[ℓ]P = 0
↔

Torsion relation in Pic0(E)(k)[
ℓ(P)− ℓ(0E)

]
= 0

↔
Monodromy in Div0(E)

ℓ(P)− ℓ(0E) = div fℓ,P

The non-reduced Tate pairing of degree ℓ ∈ N over k stems from monodromy:

eT,ℓ : E[ℓ](k)× E(k)/[ℓ]E(k) → k×/(k×)ℓ

(P, [Q]) 7→ fℓ,P (Q)
Miller’s algorithm:

Compute P 7→ [ℓ]P = 0, say using an addition chain P, 2P, ..., ℓP

Accumulate evaluated line functions: fℓ,P (Q) =
∏
j

l[nj]P,[mj]P (Q)

l[mj]P,[mj]P (Q)
⇝ pairing from the intermediate additions!

Monodromy already appears in the Montgomery ladder alone:

Start with 0E = (1 : 0) and P = (XP : ZP)

Perform Ladder(P, ℓ): get [ℓ]P = (XℓP : 0) = (1 : 0)
⇝ XℓP is a monodromy factor. Projective coordinates carry meaning!

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 3 / 10

Montgomery ladders almost compute pairings

P = (xP : 1) ∈ E[ℓ], Q = (xQ : 1), P −Q = (xP−Q : 1)

Look at monodromy factors using ladders:

0E = (1, 0) 3PtLadder(ℓ,P,Q;P−Q)−−−−−−−−−−−−−−−→
[ℓ]P = (XℓP , 0) differ by λP = XℓP

Q = (xQ, 1) [ℓ]P +Q = (XℓP+Q, ZℓP+Q) differ by λQ = ZℓP+Q

From this we get the Tate pairing! squared, + garbage

λQ/λP = eT,ℓ(P,Q)2 · stuff

More precisely, stuff =
(4xP)

ℓ·(¬ℓ+1)

(4xP)ℓ·¬ℓ(4xQ)ℓ(4xP−Q)¬ℓ
depends on

initial input coordinates

bit representation of ℓ.

Solution: compute stuff and divide it out...
or better: edit the Ladder to get rid of stuff.

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 4 / 10

Montgomery ladders almost compute pairings

P = (xP : 1) ∈ E[ℓ], Q = (xQ : 1), P −Q = (xP−Q : 1)

Look at monodromy factors using ladders:

0E = (1, 0) 3PtLadder(ℓ,P,Q;P−Q)−−−−−−−−−−−−−−−→
[ℓ]P = (XℓP , 0) differ by λP = XℓP

Q = (xQ, 1) [ℓ]P +Q = (XℓP+Q, ZℓP+Q) differ by λQ = ZℓP+Q

From this we get the Tate pairing! squared, + garbage

λQ/λP = eT,ℓ(P,Q)2 · stuff

More precisely, stuff =
(4xP)

ℓ·(¬ℓ+1)

(4xP)ℓ·¬ℓ(4xQ)ℓ(4xP−Q)¬ℓ
depends on

initial input coordinates

bit representation of ℓ.

Solution: compute stuff and divide it out...
or better: edit the Ladder to get rid of stuff.

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 4 / 10

Montgomery ladders almost compute pairings

P = (xP : 1) ∈ E[ℓ], Q = (xQ : 1), P −Q = (xP−Q : 1)

Look at monodromy factors using ladders:

0E = (1, 0) 3PtLadder(ℓ,P,Q;P−Q)−−−−−−−−−−−−−−−→
[ℓ]P = (XℓP , 0) differ by λP = XℓP

Q = (xQ, 1) [ℓ]P +Q = (XℓP+Q, ZℓP+Q) differ by λQ = ZℓP+Q

From this we get the Tate pairing!

squared, + garbage

λQ/λP = eT,ℓ(P,Q)2 · stuff

More precisely, stuff =
(4xP)

ℓ·(¬ℓ+1)

(4xP)ℓ·¬ℓ(4xQ)ℓ(4xP−Q)¬ℓ
depends on

initial input coordinates

bit representation of ℓ.

Solution: compute stuff and divide it out...
or better: edit the Ladder to get rid of stuff.

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 4 / 10

Montgomery ladders almost compute pairings

P = (xP : 1) ∈ E[ℓ], Q = (xQ : 1), P −Q = (xP−Q : 1)

Look at monodromy factors using ladders:

0E = (1, 0) 3PtLadder(ℓ,P,Q;P−Q)−−−−−−−−−−−−−−−→
[ℓ]P = (XℓP , 0) differ by λP = XℓP

Q = (xQ, 1) [ℓ]P +Q = (XℓP+Q, ZℓP+Q) differ by λQ = ZℓP+Q

From this we get the Tate pairing! squared, + garbage

λQ/λP = eT,ℓ(P,Q)2 · stuff

More precisely, stuff =
(4xP)

ℓ·(¬ℓ+1)

(4xP)ℓ·¬ℓ(4xQ)ℓ(4xP−Q)¬ℓ
depends on

initial input coordinates

bit representation of ℓ.

Solution: compute stuff and divide it out...
or better: edit the Ladder to get rid of stuff.

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 4 / 10

Montgomery ladders almost compute pairings
P = (xP : 1) ∈ E[ℓ], Q = (xQ : 1), P −Q = (xP−Q : 1)

Look at monodromy factors using ladders:

0E = (1, 0) 3PtLadder(ℓ,P,Q;P−Q)−−−−−−−−−−−−−−−→
[ℓ]P = (XℓP , 0) differ by λP = XℓP

Q = (xQ, 1) [ℓ]P +Q = (XℓP+Q, ZℓP+Q) differ by λQ = ZℓP+Q

From this we get the Tate pairing! squared, + garbage

λQ/λP = eT,ℓ(P,Q)2 · stuff

More precisely, stuff =
(4xP)

ℓ·(¬ℓ+1)

(4xP)ℓ·¬ℓ(4xQ)ℓ(4xP−Q)¬ℓ
depends on3

initial input coordinates

bit representation of ℓ.

Solution: compute stuff and divide it out...
or better: edit the Ladder to get rid of stuff.

3notation: ¬ℓ = bitwise negation of the bit representation of ℓ
Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 4 / 10

Montgomery ladders almost compute pairings
P = (xP : 1) ∈ E[ℓ], Q = (xQ : 1), P −Q = (xP−Q : 1)

Look at monodromy factors using ladders:

0E = (1, 0) 3PtLadder(ℓ,P,Q;P−Q)−−−−−−−−−−−−−−−→
[ℓ]P = (XℓP , 0) differ by λP = XℓP

Q = (xQ, 1) [ℓ]P +Q = (XℓP+Q, ZℓP+Q) differ by λQ = ZℓP+Q

From this we get the Tate pairing! squared, + garbage

λQ/λP = eT,ℓ(P,Q)2 · stuff

More precisely, stuff =
(4xP)

ℓ·(¬ℓ+1)

(4xP)ℓ·¬ℓ(4xQ)ℓ(4xP−Q)¬ℓ
depends on3

initial input coordinates

bit representation of ℓ.

Solution: compute stuff and divide it out...
or better: edit the Ladder to get rid of stuff.

3notation: ¬ℓ = bitwise negation of the bit representation of ℓ
Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 4 / 10

Montgomery ladders compute pairings

Consider xADD(P,Q;P −Q) = (XP+Q, ZP+Q).

Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

XP+Q = ZP−Q (T + U)2 ,

ZP+Q = XP−Q (T − U)2 .
⇝

XP+Q = (4XP−Q)
−1 · (T + U)2 ,

ZP+Q = (4ZP−Q)
−1 · (T − U)2 .

Montgomery arithmetic using xDBL and the new cADD: cubical arithmetic.

Replace now cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′
Q/λ

′
P = XℓP /ZℓP+Q = eT,ℓ(P,Q)2 without extra stuff!

The square is not a problem when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.

Inverses can be pre-computed and batched: only one inversion per pairing

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 5 / 10

Montgomery ladders compute pairings

Consider xADD(P,Q;P −Q) = (XP+Q, ZP+Q).
Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

XP+Q = ZP−Q (T + U)2 ,

ZP+Q = XP−Q (T − U)2 .
⇝

XP+Q = (4XP−Q)
−1 · (T + U)2 ,

ZP+Q = (4ZP−Q)
−1 · (T − U)2 .

Montgomery arithmetic using xDBL and the new cADD: cubical arithmetic.

Replace now cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′
Q/λ

′
P = XℓP /ZℓP+Q = eT,ℓ(P,Q)2 without extra stuff!

The square is not a problem when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.

Inverses can be pre-computed and batched: only one inversion per pairing

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 5 / 10

Montgomery ladders compute pairings

Consider xADD(P,Q;P −Q) = (XP+Q, ZP+Q).
Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

XP+Q = ZP−Q (T + U)2 ,

ZP+Q = XP−Q (T − U)2 .
⇝

XP+Q = (4XP−Q)
−1 · (T + U)2 ,

ZP+Q = (4ZP−Q)
−1 · (T − U)2 .

Montgomery arithmetic using xDBL and the new cADD: cubical arithmetic.

Replace now cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′
Q/λ

′
P = XℓP /ZℓP+Q = eT,ℓ(P,Q)2 without extra stuff!

The square is not a problem when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.

Inverses can be pre-computed and batched: only one inversion per pairing

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 5 / 10

Montgomery ladders compute pairings

Consider xADD(P,Q;P −Q) = (XP+Q, ZP+Q).
Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

XP+Q = ZP−Q (T + U)2 ,

ZP+Q = XP−Q (T − U)2 .
⇝

XP+Q = (4XP−Q)
−1 · (T + U)2 ,

ZP+Q = (4ZP−Q)
−1 · (T − U)2 .

Montgomery arithmetic using xDBL and the new cADD: cubical arithmetic.

Replace now cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′
Q/λ

′
P = XℓP /ZℓP+Q = eT,ℓ(P,Q)2 without extra stuff!

The square is not a problem when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.

Inverses can be pre-computed and batched: only one inversion per pairing

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 5 / 10

Montgomery ladders compute pairings

Consider xADD(P,Q;P −Q) = (XP+Q, ZP+Q).
Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

XP+Q = ZP−Q (T + U)2 ,

ZP+Q = XP−Q (T − U)2 .
⇝

XP+Q = (4XP−Q)
−1 · (T + U)2 ,

ZP+Q = (4ZP−Q)
−1 · (T − U)2 .

Montgomery arithmetic using xDBL and the new cADD: cubical arithmetic.

Replace now cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′
Q/λ

′
P = XℓP /ZℓP+Q = eT,ℓ(P,Q)2 without extra stuff!

The square is not a problem when ℓ is odd ✓

ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.

Inverses can be pre-computed and batched: only one inversion per pairing

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 5 / 10

Montgomery ladders compute pairings

Consider xADD(P,Q;P −Q) = (XP+Q, ZP+Q).
Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

XP+Q = ZP−Q (T + U)2 ,

ZP+Q = XP−Q (T − U)2 .
⇝

XP+Q = (4XP−Q)
−1 · (T + U)2 ,

ZP+Q = (4ZP−Q)
−1 · (T − U)2 .

Montgomery arithmetic using xDBL and the new cADD: cubical arithmetic.

Replace now cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′
Q/λ

′
P = XℓP /ZℓP+Q = eT,ℓ(P,Q)2 without extra stuff!

The square is not a problem when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.

Inverses can be pre-computed and batched: only one inversion per pairing

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 5 / 10

Montgomery ladders compute pairings

Consider xADD(P,Q;P −Q) = (XP+Q, ZP+Q).
Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

XP+Q = ZP−Q (T + U)2 ,

ZP+Q = XP−Q (T − U)2 .
⇝

XP+Q = (4XP−Q)
−1 · (T + U)2 ,

ZP+Q = (4ZP−Q)
−1 · (T − U)2 .

Montgomery arithmetic using xDBL and the new cADD: cubical arithmetic.

Replace now cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′
Q/λ

′
P = XℓP /ZℓP+Q = eT,ℓ(P,Q)2 without extra stuff!

The square is not a problem when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.4

Inverses can be pre-computed and batched: only one inversion per pairing

4Rust and Sagemath libraries provided at https://github.com/GiacomoPope/cubical-pairings
Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 5 / 10

https://github.com/GiacomoPope/cubical-pairings

Montgomery ladders compute pairings

Consider xADD(P,Q;P −Q) = (XP+Q, ZP+Q).
Modify into cADD: different projective scaling of the output (XP+Q, ZP+Q)

XP+Q = ZP−Q (T + U)2 ,

ZP+Q = XP−Q (T − U)2 .
⇝

XP+Q = (4XP−Q)
−1 · (T + U)2 ,

ZP+Q = (4ZP−Q)
−1 · (T − U)2 .

Montgomery arithmetic using xDBL and the new cADD: cubical arithmetic.

Replace now cADD into the ladder.
Then cLadder(ℓ, P,Q;P −Q) 7→ (ℓP, ℓP +Q) in (X,Z)-coordinates:

λ′
Q/λ

′
P = XℓP /ZℓP+Q = eT,ℓ(P,Q)2 without extra stuff!

The square is not a problem when ℓ is odd ✓ ℓ even −→ small trick to avoid the square

Just minor tweak needed in the conversion xADD −→ cADD
⇝ easy optimized, constant-time implementation.4

Inverses can be pre-computed and batched: only one inversion per pairing

4Rust and Sagemath libraries provided at https://github.com/GiacomoPope/cubical-pairings
Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 5 / 10

https://github.com/GiacomoPope/cubical-pairings

Cubical arithmetic

It seems: there’s a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement:

Projective coordinates X,Z are global sections of a line bundle L
There is a canonical isomorphism of line bundles

t∗P1
L ⊗ t∗P2

L ⊗ t∗P3
L ⊗ t∗P1+P2+P3

L ∼= t∗P2+P3
L ⊗ t∗P1+P3

L ⊗ t∗P1+P2
L ⊗ L

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3
Read t∗PL as: choose scaling of coordinates XP , ZP

Given coordinates of 7 vertices,
isomorphism above =⇒ canonical choice for the 8th

We get cADD (and cDBL) as special case:
Let (P1, P2, P3) = (P,Q,−Q). The vertices

(P, Q, −Q, P, 0, P +Q, P −Q, 0)

Fixing P,Q, P −Q we get P +Q uniquely!

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 6 / 10

Cubical arithmetic

It seems: there’s a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement:

Projective coordinates X,Z are global sections of a line bundle L

There is a canonical isomorphism of line bundles

t∗P1
L ⊗ t∗P2

L ⊗ t∗P3
L ⊗ t∗P1+P2+P3

L ∼= t∗P2+P3
L ⊗ t∗P1+P3

L ⊗ t∗P1+P2
L ⊗ L

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3
Read t∗PL as: choose scaling of coordinates XP , ZP

Given coordinates of 7 vertices,
isomorphism above =⇒ canonical choice for the 8th

We get cADD (and cDBL) as special case:
Let (P1, P2, P3) = (P,Q,−Q). The vertices

(P, Q, −Q, P, 0, P +Q, P −Q, 0)

Fixing P,Q, P −Q we get P +Q uniquely!

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 6 / 10

Cubical arithmetic

It seems: there’s a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement:

Projective coordinates X,Z are global sections of a line bundle L
There is a canonical isomorphism of line bundles

t∗P1
L ⊗ t∗P2

L ⊗ t∗P3
L ⊗ t∗P1+P2+P3

L ∼= t∗P2+P3
L ⊗ t∗P1+P3

L ⊗ t∗P1+P2
L ⊗ L

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3
Read t∗PL as: choose scaling of coordinates XP , ZP

Given coordinates of 7 vertices,
isomorphism above =⇒ canonical choice for the 8th

We get cADD (and cDBL) as special case:
Let (P1, P2, P3) = (P,Q,−Q). The vertices

(P, Q, −Q, P, 0, P +Q, P −Q, 0)

Fixing P,Q, P −Q we get P +Q uniquely!

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 6 / 10

Cubical arithmetic

It seems: there’s a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement:

Projective coordinates X,Z are global sections of a line bundle L
There is a canonical isomorphism of line bundles

t∗P1
L ⊗ t∗P2

L ⊗ t∗P3
L ⊗ t∗P1+P2+P3

L ∼= t∗P2+P3
L ⊗ t∗P1+P3

L ⊗ t∗P1+P2
L ⊗ L

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3

Read t∗PL as: choose scaling of coordinates XP , ZP

Given coordinates of 7 vertices,
isomorphism above =⇒ canonical choice for the 8th

We get cADD (and cDBL) as special case:
Let (P1, P2, P3) = (P,Q,−Q). The vertices

(P, Q, −Q, P, 0, P +Q, P −Q, 0)

Fixing P,Q, P −Q we get P +Q uniquely!

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 6 / 10

Cubical arithmetic

It seems: there’s a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement:

Projective coordinates X,Z are global sections of a line bundle L
There is a canonical isomorphism of line bundles

t∗P1
L ⊗ t∗P2

L ⊗ t∗P3
L ⊗ t∗P1+P2+P3

L ∼= t∗P2+P3
L ⊗ t∗P1+P3

L ⊗ t∗P1+P2
L ⊗ L

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3
Read t∗PL as: choose scaling of coordinates XP , ZP

Given coordinates of 7 vertices,
isomorphism above =⇒ canonical choice for the 8th

We get cADD (and cDBL) as special case:
Let (P1, P2, P3) = (P,Q,−Q). The vertices

(P, Q, −Q, P, 0, P +Q, P −Q, 0)

Fixing P,Q, P −Q we get P +Q uniquely!

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 6 / 10

Cubical arithmetic

It seems: there’s a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement:

Projective coordinates X,Z are global sections of a line bundle L
There is a canonical isomorphism of line bundles

t∗P1
L ⊗ t∗P2

L ⊗ t∗P3
L ⊗ t∗P1+P2+P3

L ∼= t∗P2+P3
L ⊗ t∗P1+P3

L ⊗ t∗P1+P2
L ⊗ L

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3
Read t∗PL as: choose scaling of coordinates XP , ZP

Given coordinates of 7 vertices,
isomorphism above =⇒ canonical choice for the 8th

We get cADD (and cDBL) as special case:
Let (P1, P2, P3) = (P,Q,−Q). The vertices

(P, Q, −Q, P, 0, P +Q, P −Q, 0)

Fixing P,Q, P −Q we get P +Q uniquely!

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 6 / 10

Cubical arithmetic

It seems: there’s a preferred projective scaling in the output of xADD. Not a coincidence!

Algebraic statement:

Projective coordinates X,Z are global sections of a line bundle L
There is a canonical isomorphism of line bundles

t∗P1
L ⊗ t∗P2

L ⊗ t∗P3
L ⊗ t∗P1+P2+P3

L ∼= t∗P2+P3
L ⊗ t∗P1+P3

L ⊗ t∗P1+P2
L ⊗ L

0E
P1

P2

P3

P1 + P2

P1 + P3

P2 + P3 P1 + P2 + P3
Read t∗PL as: choose scaling of coordinates XP , ZP

Given coordinates of 7 vertices,
isomorphism above =⇒ canonical choice for the 8th

We get cADD (and cDBL) as special case:
Let (P1, P2, P3) = (P,Q,−Q). The vertices

(P, Q, −Q, P, 0, P +Q, P −Q, 0)

Fixing P,Q, P −Q we get P +Q uniquely!

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 6 / 10

Cubical arithmetic as a way to get Miller functions
Consider the projective coordinates X,Z.

Warning: they’re global sections of a line bundle, not rational functions in k(E).
The rational (meromorphic) functions corresp. to X,Z are x, 1 respectively.

However, see 0E = (1 : 0). The coordinate Z has a zero at 0E (with multiplicity!)
Global sections have a zero locus. There is a reasonable notion of divisor of zeroes:

div0(Z) = 2(0E), div0(Z(·+ P)) = 2(−P).

Idea: compute some ratio g(·) = Z(·+ P1) · · ·Z(·+ Pm)

Z(·+Q1) · · ·Z(·+Qm)
(in gen. not a function in k(E))

where the Pi, Qj are all compatible via the cubical arithmetic.

When the Pi, Qj are chosen carefully, we can get a rational function g ∈ k(E), satisfying

div g = 2(−P1) + · · ·+ 2(−Pm)− 2(−Q1)− · · · − 2(−Qm)

Miller fns: P ∈ E[ℓ]. Then fℓ,P : R 7→ Z(R+ ℓP)Z(R)ℓ−1

Z(P)ℓ
has divisor 2

(
ℓ(0)− ℓ(−P)

)

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 7 / 10

Cubical arithmetic as a way to get Miller functions
Consider the projective coordinates X,Z.

Warning: they’re global sections of a line bundle, not rational functions in k(E).
The rational (meromorphic) functions corresp. to X,Z are x, 1 respectively.

However, see 0E = (1 : 0). The coordinate Z has a zero at 0E (with multiplicity!)
Global sections have a zero locus. There is a reasonable notion of divisor of zeroes:

div0(Z) = 2(0E), div0(Z(·+ P)) = 2(−P).

Idea: compute some ratio g(·) = Z(·+ P1) · · ·Z(·+ Pm)

Z(·+Q1) · · ·Z(·+Qm)
(in gen. not a function in k(E))

where the Pi, Qj are all compatible via the cubical arithmetic.

When the Pi, Qj are chosen carefully, we can get a rational function g ∈ k(E), satisfying

div g = 2(−P1) + · · ·+ 2(−Pm)− 2(−Q1)− · · · − 2(−Qm)

Miller fns: P ∈ E[ℓ]. Then fℓ,P : R 7→ Z(R+ ℓP)Z(R)ℓ−1

Z(P)ℓ
has divisor 2

(
ℓ(0)− ℓ(−P)

)

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 7 / 10

Cubical arithmetic as a way to get Miller functions
Consider the projective coordinates X,Z.

Warning: they’re global sections of a line bundle, not rational functions in k(E).
The rational (meromorphic) functions corresp. to X,Z are x, 1 respectively.

However, see 0E = (1 : 0). The coordinate Z has a zero at 0E (with multiplicity!)
Global sections have a zero locus. There is a reasonable notion of divisor of zeroes:

div0(Z) = 2(0E), div0(Z(·+ P)) = 2(−P).

Idea: compute some ratio g(·) = Z(·+ P1) · · ·Z(·+ Pm)

Z(·+Q1) · · ·Z(·+Qm)
(in gen. not a function in k(E))

where the Pi, Qj are all compatible via the cubical arithmetic.

When the Pi, Qj are chosen carefully, we can get a rational function g ∈ k(E), satisfying

div g = 2(−P1) + · · ·+ 2(−Pm)− 2(−Q1)− · · · − 2(−Qm)

Miller fns: P ∈ E[ℓ]. Then fℓ,P : R 7→ Z(R+ ℓP)Z(R)ℓ−1

Z(P)ℓ
has divisor 2

(
ℓ(0)− ℓ(−P)

)

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 7 / 10

Cubical arithmetic as a way to get Miller functions
Consider the projective coordinates X,Z.

Warning: they’re global sections of a line bundle, not rational functions in k(E).
The rational (meromorphic) functions corresp. to X,Z are x, 1 respectively.

However, see 0E = (1 : 0). The coordinate Z has a zero at 0E (with multiplicity!)
Global sections have a zero locus. There is a reasonable notion of divisor of zeroes:

div0(Z) = 2(0E), div0(Z(·+ P)) = 2(−P).

Idea: compute some ratio g(·) = Z(·+ P1) · · ·Z(·+ Pm)

Z(·+Q1) · · ·Z(·+Qm)
(in gen. not a function in k(E))

where the Pi, Qj are all compatible via the cubical arithmetic.

When the Pi, Qj are chosen carefully, we can get a rational function g ∈ k(E), satisfying

div g = 2(−P1) + · · ·+ 2(−Pm)− 2(−Q1)− · · · − 2(−Qm)

Miller fns: P ∈ E[ℓ]. Then fℓ,P : R 7→ Z(R+ ℓP)Z(R)ℓ−1

Z(P)ℓ
has divisor 2

(
ℓ(0)− ℓ(−P)

)

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 7 / 10

Cubical arithmetic as a way to get Miller functions
Consider the projective coordinates X,Z.

Warning: they’re global sections of a line bundle, not rational functions in k(E).
The rational (meromorphic) functions corresp. to X,Z are x, 1 respectively.

However, see 0E = (1 : 0). The coordinate Z has a zero at 0E (with multiplicity!)
Global sections have a zero locus. There is a reasonable notion of divisor of zeroes:

div0(Z) = 2(0E), div0(Z(·+ P)) = 2(−P).

Idea: compute some ratio g(·) = Z(·+ P1) · · ·Z(·+ Pm)

Z(·+Q1) · · ·Z(·+Qm)
(in gen. not a function in k(E))

where the Pi, Qj are all compatible via the cubical arithmetic.

When the Pi, Qj are chosen carefully, we can get a rational function g ∈ k(E), satisfying

div g = 2(−P1) + · · ·+ 2(−Pm)− 2(−Q1)− · · · − 2(−Qm)

Miller fns: P ∈ E[ℓ]. Then fℓ,P : R 7→ Z(R+ ℓP)Z(R)ℓ−1

Z(P)ℓ
has divisor 2

(
ℓ(0)− ℓ(−P)

)

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 7 / 10

Cubical arithmetic as a way to get Miller functions
Consider the projective coordinates X,Z.

Warning: they’re global sections of a line bundle, not rational functions in k(E).
The rational (meromorphic) functions corresp. to X,Z are x, 1 respectively.

However, see 0E = (1 : 0). The coordinate Z has a zero at 0E (with multiplicity!)
Global sections have a zero locus. There is a reasonable notion of divisor of zeroes:

div0(Z) = 2(0E), div0(Z(·+ P)) = 2(−P).

Idea: compute some ratio g(·) = Z(·+ P1) · · ·Z(·+ Pm)

Z(·+Q1) · · ·Z(·+Qm)
(in gen. not a function in k(E))

where the Pi, Qj are all compatible via the cubical arithmetic.

When the Pi, Qj are chosen carefully, we can get a rational function g ∈ k(E), satisfying

div g = 2(−P1) + · · ·+ 2(−Pm)− 2(−Q1)− · · · − 2(−Qm)

Miller fns: P ∈ E[ℓ]. Then fℓ,P : R 7→ Z(R+ ℓP)Z(R)ℓ−1

Z(P)ℓ
has divisor 2

(
ℓ(0)− ℓ(−P)

)
Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 7 / 10

End of the theory!

Some applications now

Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N], with N smooth.

Let R ∈ E[N].

DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

How to solve? Weil pairing: eN : E[N]× E[N] → µN .

Alternating: e(P, P) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
e(P,Q) has order N ⇐⇒ ⟨P,Q⟩ = E[N]

In many isogeny applications, use Tate pairing: similar properties, faster to compute.

Some details:

ζ0 = eN (P,Q) has order N

hb = eN (R,P) = eN ([a]P + [b]Q,P) = ζ−b
0

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa0

⇝ DLog in µN ,
much easier

Use examples: Point compression in SQIsignHD: ∼ 40% cost reduction
Decryption in (Q)FESTA, HD protocols...

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 8 / 10

Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N], with N smooth.

Let R ∈ E[N]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

How to solve? Weil pairing: eN : E[N]× E[N] → µN .

Alternating: e(P, P) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
e(P,Q) has order N ⇐⇒ ⟨P,Q⟩ = E[N]

In many isogeny applications, use Tate pairing: similar properties, faster to compute.

Some details:

ζ0 = eN (P,Q) has order N

hb = eN (R,P) = eN ([a]P + [b]Q,P) = ζ−b
0

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa0

⇝ DLog in µN ,
much easier

Use examples: Point compression in SQIsignHD: ∼ 40% cost reduction
Decryption in (Q)FESTA, HD protocols...

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 8 / 10

Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N], with N smooth.

Let R ∈ E[N]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

How to solve? Weil pairing: eN : E[N]× E[N] → µN .

Alternating: e(P, P) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
e(P,Q) has order N ⇐⇒ ⟨P,Q⟩ = E[N]

In many isogeny applications, use Tate pairing: similar properties, faster to compute.

Some details:

ζ0 = eN (P,Q) has order N

hb = eN (R,P) = eN ([a]P + [b]Q,P) = ζ−b
0

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa0

⇝ DLog in µN ,
much easier

Use examples: Point compression in SQIsignHD: ∼ 40% cost reduction
Decryption in (Q)FESTA, HD protocols...

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 8 / 10

Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N], with N smooth.

Let R ∈ E[N]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

How to solve? Weil pairing: eN : E[N]× E[N] → µN .

Alternating: e(P, P) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
e(P,Q) has order N ⇐⇒ ⟨P,Q⟩ = E[N]

In many isogeny applications, use Tate pairing: similar properties, faster to compute.

Some details:

ζ0 = eN (P,Q) has order N

hb = eN (R,P) = eN ([a]P + [b]Q,P) = ζ−b
0

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa0

⇝ DLog in µN ,
much easier

Use examples: Point compression in SQIsignHD: ∼ 40% cost reduction
Decryption in (Q)FESTA, HD protocols...

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 8 / 10

Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N], with N smooth.

Let R ∈ E[N]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

How to solve? Weil pairing: eN : E[N]× E[N] → µN .

Alternating: e(P, P) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
e(P,Q) has order N ⇐⇒ ⟨P,Q⟩ = E[N]

In many isogeny applications, use Tate pairing: similar properties, faster to compute.

Some details:

ζ0 = eN (P,Q) has order N

hb = eN (R,P) = eN ([a]P + [b]Q,P) = ζ−b
0

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa0

⇝ DLog in µN ,
much easier

Use examples: Point compression in SQIsignHD: ∼ 40% cost reduction
Decryption in (Q)FESTA, HD protocols...

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 8 / 10

Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N], with N smooth.

Let R ∈ E[N]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

How to solve? Weil pairing: eN : E[N]× E[N] → µN .

Alternating: e(P, P) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
e(P,Q) has order N ⇐⇒ ⟨P,Q⟩ = E[N]

In many isogeny applications, use Tate pairing: similar properties, faster to compute.

Some details:
ζ0 = eN (P,Q) has order N

hb = eN (R,P) = eN ([a]P + [b]Q,P) = ζ−b
0

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa0

⇝ DLog in µN ,
much easier

Use examples: Point compression in SQIsignHD: ∼ 40% cost reduction
Decryption in (Q)FESTA, HD protocols...

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 8 / 10

Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N], with N smooth.

Let R ∈ E[N]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

How to solve? Weil pairing: eN : E[N]× E[N] → µN .

Alternating: e(P, P) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
e(P,Q) has order N ⇐⇒ ⟨P,Q⟩ = E[N]

In many isogeny applications, use Tate pairing: similar properties, faster to compute.

Some details:
ζ0 = eN (P,Q) has order N

hb = eN (R,P) = eN ([a]P + [b]Q,P) = ζ−b
0

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa0

⇝ DLog in µN ,
much easier

Use examples: Point compression in SQIsignHD: ∼ 40% cost reduction
Decryption in (Q)FESTA, HD protocols...

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 8 / 10

Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N], with N smooth.

Let R ∈ E[N]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

How to solve? Weil pairing: eN : E[N]× E[N] → µN .

Alternating: e(P, P) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
e(P,Q) has order N ⇐⇒ ⟨P,Q⟩ = E[N]

In many isogeny applications, use Tate pairing: similar properties, faster to compute.

Some details:
ζ0 = eN (P,Q) has order N

hb = eN (R,P) = eN ([a]P + [b]Q,P) = ζ−b
0

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa0

⇝ DLog in µN ,
much easier

Use examples: Point compression in SQIsignHD: ∼ 40% cost reduction
Decryption in (Q)FESTA, HD protocols...

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 8 / 10

Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N], with N smooth.

Let R ∈ E[N]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

How to solve? Weil pairing: eN : E[N]× E[N] → µN .

Alternating: e(P, P) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
e(P,Q) has order N ⇐⇒ ⟨P,Q⟩ = E[N]

In many isogeny applications, use Tate pairing: similar properties, faster to compute.

Some details:
ζ0 = eN (P,Q) has order N

hb = eN (R,P) = eN ([a]P + [b]Q,P) = ζ−b
0

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa0

⇝ DLog in µN ,
much easier

Use examples: Point compression in SQIsignHD: ∼ 40% cost reduction
Decryption in (Q)FESTA, HD protocols...

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 8 / 10

Application: multi-dimensional discrete logarithms

Consider a torsion basis ⟨P,Q⟩ = E[N], with N smooth.

Let R ∈ E[N]. DLog problem: recover (a, b) s.t. R = [a]P + [b]Q.

How to solve? Weil pairing: eN : E[N]× E[N] → µN .

Alternating: e(P, P) = 1

Non-degenerate: if P has order N , there is Q s.t. e(P,Q) has order N .
e(P,Q) has order N ⇐⇒ ⟨P,Q⟩ = E[N]

In many isogeny applications, use Tate pairing: similar properties, faster to compute.

Some details:
ζ0 = eN (P,Q) has order N

hb = eN (R,P) = eN ([a]P + [b]Q,P) = ζ−b
0

ha = eN (R,Q) = eN ([a]P + [b]Q,Q) = ζa0

⇝ DLog in µN ,
much easier

Use examples: Point compression in SQIsignHD: ∼ 40% cost reduction
Decryption in (Q)FESTA, HD protocols...

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 8 / 10

Further applications: torsion bases, supersingularity testing

Weil pairing: eW,N : E[N]× E[N] → µN .

Non-degenerate =⇒ e(P,Q) has order N iff P,Q are a torsion basis.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi

Sample random points P,Q

Test they form a torsion basis by testing the order of e(P,Q) ∈ µN .

⇝ Order testing in µN : much faster than trial multiplication P 7→ [N/ℓi]P ✓

Application #2: Supersingularity verification

Let E/Fp2 be a supersingular curve, say E(Fp2) ∼= (Z/(p± 1)Z)2.
Try to generate a (p+ 1)-torsion basis. If success, return “E is supersingular”.

fail if we find P with [p+ 1]P ̸= 0. Retry few times otherwise.

⇝ Probability of false negatives: 0. Probability of false positives: negligible. ✓

Use-case example: CSIDH public key validation: ∼ 7% cost reduction.

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 9 / 10

Further applications: torsion bases, supersingularity testing

Weil pairing: eW,N : E[N]× E[N] → µN .

Non-degenerate =⇒ e(P,Q) has order N iff P,Q are a torsion basis.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi

Sample random points P,Q

Test they form a torsion basis by testing the order of e(P,Q) ∈ µN .

⇝ Order testing in µN : much faster than trial multiplication P 7→ [N/ℓi]P ✓

Application #2: Supersingularity verification

Let E/Fp2 be a supersingular curve, say E(Fp2) ∼= (Z/(p± 1)Z)2.
Try to generate a (p+ 1)-torsion basis. If success, return “E is supersingular”.

fail if we find P with [p+ 1]P ̸= 0. Retry few times otherwise.

⇝ Probability of false negatives: 0. Probability of false positives: negligible. ✓

Use-case example: CSIDH public key validation: ∼ 7% cost reduction.

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 9 / 10

Further applications: torsion bases, supersingularity testing

Weil pairing: eW,N : E[N]× E[N] → µN .

Non-degenerate =⇒ e(P,Q) has order N iff P,Q are a torsion basis.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi

Sample random points P,Q

Test they form a torsion basis by testing the order of e(P,Q) ∈ µN .

⇝ Order testing in µN : much faster than trial multiplication P 7→ [N/ℓi]P ✓

Application #2: Supersingularity verification

Let E/Fp2 be a supersingular curve, say E(Fp2) ∼= (Z/(p± 1)Z)2.
Try to generate a (p+ 1)-torsion basis. If success, return “E is supersingular”.

fail if we find P with [p+ 1]P ̸= 0. Retry few times otherwise.

⇝ Probability of false negatives: 0. Probability of false positives: negligible. ✓

Use-case example: CSIDH public key validation: ∼ 7% cost reduction.

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 9 / 10

Further applications: torsion bases, supersingularity testing

Weil pairing: eW,N : E[N]× E[N] → µN .

Non-degenerate =⇒ e(P,Q) has order N iff P,Q are a torsion basis.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi

Sample random points P,Q

Test they form a torsion basis by testing the order of e(P,Q) ∈ µN .

⇝ Order testing in µN : much faster than trial multiplication P 7→ [N/ℓi]P ✓

Application #2: Supersingularity verification

Let E/Fp2 be a supersingular curve, say E(Fp2) ∼= (Z/(p± 1)Z)2.

Try to generate a (p+ 1)-torsion basis. If success, return “E is supersingular”.

fail if we find P with [p+ 1]P ̸= 0. Retry few times otherwise.

⇝ Probability of false negatives: 0. Probability of false positives: negligible. ✓

Use-case example: CSIDH public key validation: ∼ 7% cost reduction.

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 9 / 10

Further applications: torsion bases, supersingularity testing

Weil pairing: eW,N : E[N]× E[N] → µN .

Non-degenerate =⇒ e(P,Q) has order N iff P,Q are a torsion basis.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi

Sample random points P,Q

Test they form a torsion basis by testing the order of e(P,Q) ∈ µN .

⇝ Order testing in µN : much faster than trial multiplication P 7→ [N/ℓi]P ✓

Application #2: Supersingularity verification

Let E/Fp2 be a supersingular curve, say E(Fp2) ∼= (Z/(p± 1)Z)2.
Try to generate a (p+ 1)-torsion basis. If success, return “E is supersingular”.

fail if we find P with [p+ 1]P ̸= 0. Retry few times otherwise.

⇝ Probability of false negatives: 0. Probability of false positives: negligible. ✓

Use-case example: CSIDH public key validation: ∼ 7% cost reduction.

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 9 / 10

Further applications: torsion bases, supersingularity testing

Weil pairing: eW,N : E[N]× E[N] → µN .

Non-degenerate =⇒ e(P,Q) has order N iff P,Q are a torsion basis.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi

Sample random points P,Q

Test they form a torsion basis by testing the order of e(P,Q) ∈ µN .

⇝ Order testing in µN : much faster than trial multiplication P 7→ [N/ℓi]P ✓

Application #2: Supersingularity verification

Let E/Fp2 be a supersingular curve, say E(Fp2) ∼= (Z/(p± 1)Z)2.
Try to generate a (p+ 1)-torsion basis. If success, return “E is supersingular”.

fail if we find P with [p+ 1]P ̸= 0. Retry few times otherwise.

⇝ Probability of false negatives: 0. Probability of false positives: negligible. ✓

Use-case example: CSIDH public key validation: ∼ 7% cost reduction.

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 9 / 10

Further applications: torsion bases, supersingularity testing

Weil pairing: eW,N : E[N]× E[N] → µN .

Non-degenerate =⇒ e(P,Q) has order N iff P,Q are a torsion basis.

Application #1: Torsion basis generation for very composite N =
∏

i ℓi

Sample random points P,Q

Test they form a torsion basis by testing the order of e(P,Q) ∈ µN .

⇝ Order testing in µN : much faster than trial multiplication P 7→ [N/ℓi]P ✓

Application #2: Supersingularity verification

Let E/Fp2 be a supersingular curve, say E(Fp2) ∼= (Z/(p± 1)Z)2.
Try to generate a (p+ 1)-torsion basis. If success, return “E is supersingular”.

fail if we find P with [p+ 1]P ̸= 0. Retry few times otherwise.

⇝ Probability of false negatives: 0. Probability of false positives: negligible. ✓

Use-case example: CSIDH public key validation: ∼ 7% cost reduction.

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 9 / 10

Further directions

The theory of cubical arithmetic and biextensions applies much more generally:

Other pairings (e.g., Ate pairing and variants):

⇝ optimizations in pairing-based crypto, see [LRZZ25]

Other curve models: Theta, Weierstrass, Edwards, . . .

Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
⇝ Cubical pairings already present in AVisogenies in Magma.
⇝ We have some initial Sagemath implementation.
⇝ Improve it and integrate it in the Sagemath code: coding sprints!

Thank you for listening! Questions?

Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 10 / 10

Further directions

The theory of cubical arithmetic and biextensions applies much more generally:

Other pairings (e.g., Ate pairing and variants):
⇝ optimizations in pairing-based crypto, see [LRZZ25]5

Other curve models: Theta, Weierstrass, Edwards, . . .

Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
⇝ Cubical pairings already present in AVisogenies in Magma.
⇝ We have some initial Sagemath implementation.
⇝ Improve it and integrate it in the Sagemath code: coding sprints!

Thank you for listening! Questions?

5Lin, Robert, Zhao, Zheng, Biextensions in Pairing-based Cryptography, eprint.iacr.org/2025/670
Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 10 / 10

eprint.iacr.org/2025/670

Further directions

The theory of cubical arithmetic and biextensions applies much more generally:

Other pairings (e.g., Ate pairing and variants):
⇝ optimizations in pairing-based crypto, see [LRZZ25]5

Other curve models: Theta, Weierstrass, Edwards, . . .

Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
⇝ Cubical pairings already present in AVisogenies in Magma.
⇝ We have some initial Sagemath implementation.
⇝ Improve it and integrate it in the Sagemath code: coding sprints!

Thank you for listening! Questions?

5Lin, Robert, Zhao, Zheng, Biextensions in Pairing-based Cryptography, eprint.iacr.org/2025/670
Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 10 / 10

eprint.iacr.org/2025/670

Further directions

The theory of cubical arithmetic and biextensions applies much more generally:

Other pairings (e.g., Ate pairing and variants):
⇝ optimizations in pairing-based crypto, see [LRZZ25]5

Other curve models: Theta, Weierstrass, Edwards, . . .

Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
⇝ Cubical pairings already present in AVisogenies in Magma.

⇝ We have some initial Sagemath implementation.
⇝ Improve it and integrate it in the Sagemath code: coding sprints!

Thank you for listening! Questions?

5Lin, Robert, Zhao, Zheng, Biextensions in Pairing-based Cryptography, eprint.iacr.org/2025/670
Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 10 / 10

eprint.iacr.org/2025/670

Further directions

The theory of cubical arithmetic and biextensions applies much more generally:

Other pairings (e.g., Ate pairing and variants):
⇝ optimizations in pairing-based crypto, see [LRZZ25]5

Other curve models: Theta, Weierstrass, Edwards, . . .

Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
⇝ Cubical pairings already present in AVisogenies in Magma.
⇝ We have some initial Sagemath implementation.
⇝ Improve it and integrate it in the Sagemath code: coding sprints!

Thank you for listening! Questions?

5Lin, Robert, Zhao, Zheng, Biextensions in Pairing-based Cryptography, eprint.iacr.org/2025/670
Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 10 / 10

eprint.iacr.org/2025/670

Further directions

The theory of cubical arithmetic and biextensions applies much more generally:

Other pairings (e.g., Ate pairing and variants):
⇝ optimizations in pairing-based crypto, see [LRZZ25]5

Other curve models: Theta, Weierstrass, Edwards, . . .

Higher dimensions: with level-2 theta models, Weil & Tate-Lichtenbaum work similarly
⇝ Cubical pairings already present in AVisogenies in Magma.
⇝ We have some initial Sagemath implementation.
⇝ Improve it and integrate it in the Sagemath code: coding sprints!

Thank you for listening! Questions?

5Lin, Robert, Zhao, Zheng, Biextensions in Pairing-based Cryptography, eprint.iacr.org/2025/670
Alessandro Sferlazza (TUM) Ladders compute pairings 28/05/2025 10 / 10

eprint.iacr.org/2025/670

Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) 7→ ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) 7→ mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP) = P + T = (ZP , XP)

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP) = P + T = (AXP −BZP , AZP −BXP)

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′

P

(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′
Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!

Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) 7→ ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) 7→ mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP) = P + T = (ZP , XP)

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP) = P + T = (AXP −BZP , AZP −BXP)

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′

P

(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′
Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!

Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) 7→ ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) 7→ mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP) = P + T = (ZP , XP)

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP) = P + T = (AXP −BZP , AZP −BXP)

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′

P

(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′
Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!

Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) 7→ ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) 7→ mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP) = P + T = (ZP , XP)

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP) = P + T = (AXP −BZP , AZP −BXP)

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′

P

(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′
Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!

Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) 7→ ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) 7→ mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP) = P + T = (ZP , XP)

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP) = P + T = (AXP −BZP , AZP −BXP)

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′

P

(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′
Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!

Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) 7→ ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) 7→ mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP) = P + T = (ZP , XP)

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP) = P + T = (AXP −BZP , AZP −BXP)

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′

P

(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′
Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!

Even-degree pairings
Consider an even integer ℓ = 2m.

P ∈ E[ℓ](k), Q ∈ E(k), cLadder(ℓ, P,Q, P −Q) 7→ ℓP, ℓP +Q

We can get the squared Tate pairing: λP /λQ = XℓP /ZℓP+Q = eT,ℓ(P,Q)2

The pairing has order dividing ℓ = 2m ⇝ the square loses one bit of information.

Step 1: only compute ladder of order m = ℓ/2.

cLadder(m,P,Q, P −Q) 7→ mP, mP +Q

Step 2: Linear translations. T = mP is a point of order 2: on the Kummer line,
translation by T induces an involution. It acts linearly on coordinates, for example

T = (0 : 1). T ∗ (XP , ZP) = P + T = (ZP , XP)

T = (A : B) ̸= (0 : 1) T ∗ (XP , ZP) = P + T = (AXP −BZP , AZP −BXP)

Step 3: Monodromy.
mP + T is projectively = 0E ⇝ monodromy factor λ′

P

(mP +Q) + T is projectively = Q ⇝ monodromy factor λ′
Q

λP /λQ = XmP+T /Z(mP+Q)+T = eT,ℓ(P,Q) without the square!

Cubical arithmetic in different models

cDBL cADD

Montgomery 3M 2S 3M 2S
Theta 3M 2S 3M 3S

Weierstrass 5M 4S 8M 2S

