Motivation 00		

Cryptographic Categories

Andrea Basso Luca De Feo Sikhar Patranabis **Ilinca Radulescu*** Benjamin Wesolowski

*ENS de Lyon and CNRS April 29, 2025

Motivation 00		Conclusion
Overview		

Motivation ●○ Background

Our Axioms

Protocol

Conclusion

Motivation

Motivation ○●		Conclusion
Motivation		

 \bullet There are several versions of SQIsign, all with the same structure, so we want to extract what's essential.

Motivation ○●		Conclusion
Motivation		

• There are several versions of SQIsign, all with the same structure, so we want to extract what's essential.

• SQIsign without all the algebraic machinery - more accessible conceptually.

Motivation ○●	Background 000	Our Axioms	Protocols 0000	Conclusion
Motivation				

 \bullet There are several versions of SQIsign, all with the same structure, so we want to extract what's essential.

- SQIsign without all the algebraic machinery more accessible conceptually.
- A new perspective to formalize such concepts using category theory.

Our Axioms

Protocol 0000 Conclusion

Background

A (small) category is defined by a set of *objects* and a set of *morphisms* with the following properties:

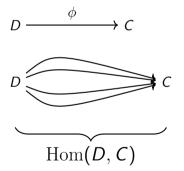
1. Every morphism ϕ has a *domain* object D and a *codomain* object C, denoted by $\phi: D \to C$.

Introduction to Categories

A (small) category is defined by a set of *objects* and a set of *morphisms* with the following properties:

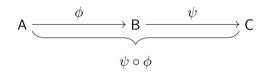
1. Every morphism ϕ has a *domain* object D and a *codomain* object C, denoted by $\phi: D \to C$.

2. The set of all morphisms with domain D and codomain C is denoted by Hom(D, C); this is called a *homset*.



Introduction to Categories

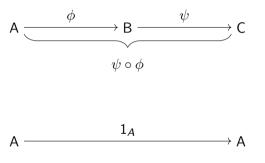
3. There exists a *composition law*, written \circ , that maps a morphism $\phi : A \to B$ and a morphism $\psi : B \to C$ to a morphism $\psi \circ \phi : A \to C$, and that is associative: $(\phi \circ \psi) \circ \chi = \phi \circ (\psi \circ \chi)$.



Introduction to Categories

3. There exists a *composition law*, written \circ , that maps a morphism $\phi : A \to B$ and a morphism $\psi : B \to C$ to a morphism $\psi \circ \phi : A \to C$, and that is associative: $(\phi \circ \psi) \circ \chi = \phi \circ (\psi \circ \chi)$.

4. For every object A, there exists a morphism $1_A : A \to A$ such that $1_A \circ \phi = \phi$ and $\psi \circ 1_A = \psi$ for every $\phi : Z \to A$ and every $\psi : A \to B$.



Motivation 00 Background

Our Axioms

Protocol

Conclusion

Our Axioms

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○○○○

		Our Axioms ○●○○○○○○○○○○○○○	Conclusion
Intuitive A×	ioms		

A cryptographic category must satisfy the following computational axioms:

- Uniqueness
- Origin
- Walk

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A Running Example - Classical SQIsign

- Fix a large $N \in \mathbb{Z}$ and a large prime p.
- **Objects**: Pairs of supersingular elliptic curves over \mathbb{F}_{p^2} together with their *N*-torsion points, (E, E[N]).
- Morphisms: Isogenies between the elliptic curves, $\psi: E \to E'$.

	Background 000	Our Axioms	Conclusion
Uniqueness			

Every object and every morphism has a unique representation as a binary string

	Our Axioms	Conclusion

Uniqueness

Every object and every morphism has a unique representation as a binary string

instantiation

For unique representation of the objects, use the *j*-invariants for the isomorphism classes of elliptic curves, together with a basis of *E*[*N*].
For the unique representation of isogenies, use a deterministic algorithm to pick 2-torsion points, 3-torsion points, ... log *N*-torsion points and use interpolation to put everything together.

Motivation Background Our Axioms Protocols 00 000 0000 0000 0000	C C
--	-----

Origin

There exists an *origin* object *O* whose representation is known.

Origin

There exists an <i>origin</i> object <i>O</i> whose representation is known.				
	instantiation			
Given p a prime, there always exists a polynomial time algorithm to find an origin curve E_0 , of known endomorphism ring.				

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

	Our Axioms 00000●000000000	

Walk

Definition

A walk, \mathcal{W} , is a deterministic algorithm which takes as input an object A and random coins r and produces a morphism $\psi : A \to B$. When r is uniformly random coins, B follows distribution μ . Moreover, $\mathcal{W}(A) := \mathcal{W}(A; r)$ is a randomized algorithm for r uniformly random coins.

Motivation	Our Axioms ○○○○○●○○○○○○○○○○	

Walk

Definition

A walk, \mathcal{W} , is a deterministic algorithm which takes as input an object A and random coins r and produces a morphism $\psi : A \to B$. When r is uniformly random coins, B follows distribution μ . Moreover, $\mathcal{W}(A) := \mathcal{W}(A; r)$ is a randomized algorithm for r uniformly random coins.

(日) (日) (日) (日) (日) (日) (日)

There exists a walk in the category called Walk.

Mot		

Background

Walk

Definition

A walk, \mathcal{W} , is a deterministic algorithm which takes as input an object A and random coins r and produces a morphism $\psi : A \to B$. When r is uniformly random coins, B follows distribution μ . Moreover, $\mathcal{W}(A) := \mathcal{W}(A; r)$ is a randomized algorithm for r uniformly random coins.

There exists a walk in the category called Walk.

A random walk in the ℓ -isogeny graph. Due to the rapid mixing properties of the ℓ -isogeny graph, the target curve, E_B , follows the uniform distribution.

Motivation	Background	Our Axioms	Protocols	Conclusion
00	000	0000000●00000000	0000	
The fingerprint				

Definition

A fingerprint, fp , is a collection of maps:

$$\mathrm{fp}:\mathrm{Hom}(-,-) o\mathcal{M}\cup\{ot\}$$

where \perp indicates undefined values.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Let $\psi : E_1 \to E_2$ be an isogeny, ℓ a small prime and $\ker(\psi) \cap E_1[\ell^n] = \ker(\psi)[\ell^n]$ prefp $(\psi) = \begin{cases} \ker(\psi)[\ell^n], & \text{if } \ker(\psi)[\ell^n] \cong \mathbb{Z}/\ell^n\mathbb{Z} \\ \bot, & \text{otherwise.} \end{cases}$

Let $\psi: E_1 \to E_2$ be an isogeny, ℓ a small prime and $\ker(\psi) \cap E_1[\ell^n] = \ker(\psi)[\ell^n]$

$$\mathsf{prefp}(\psi) = egin{cases} \mathsf{ker}(\psi)[\ell^n], & \mathsf{if } \mathsf{ker}(\psi)[\ell^n] \cong \mathbb{Z}/\ell^n\mathbb{Z} \ oxed{1}, & \mathsf{otherwise.} \end{cases}$$

However,

$$\operatorname{ker}(\psi)[\ell^n] = \langle P \rangle = \langle aP_1 + bQ_1 \rangle.$$

Let $\psi: E_1 \to E_2$ be an isogeny, ℓ a small prime and $\ker(\psi) \cap E_1[\ell^n] = \ker(\psi)[\ell^n]$

$$\mathsf{prefp}(\psi) = egin{cases} \mathsf{ker}(\psi)[\ell^n], & \mathsf{if } \mathsf{ker}(\psi)[\ell^n] \cong \mathbb{Z}/\ell^n\mathbb{Z} \ oldsymbol{\perp}, & \mathsf{otherwise.} \end{cases}$$

However,

$$\operatorname{ker}(\psi)[\ell^n] = \langle P \rangle = \langle aP_1 + bQ_1 \rangle.$$

Definition

$$\mathrm{fp}(\psi) = egin{cases} (1,a^{-1}b), & ext{if } a \in (\mathbb{Z}/\ell^n\mathbb{Z})^{ imes} \ (b^{-1}a,1), & ext{if } a \notin (\mathbb{Z}/\ell^n\mathbb{Z})^{ imes} \wedge b \in (\mathbb{Z}/\ell^n\mathbb{Z})^{ imes}. \end{cases}$$

We want the *fingerprint* to have some, if not all of the following properties, depending on which protocol we want to obtain:

- Evaluatable
- Walkability
- Hard
- Triangularizability
- Indistinguishable Walkability

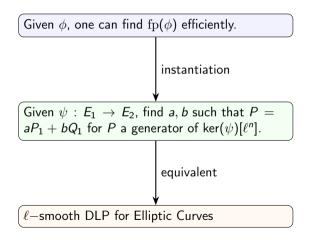
Motivation 00	Background	Our Axioms	Protocols 0000	Conclusion
Evaluatable				

Given ϕ , one can find $fp(\phi)$ efficiently.

	Background 000	Our Axioms 000000000000000	Protocols 0000	Conclusion
Evaluatable				

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 - のへで

Given ϕ , one can find $\operatorname{fp}(\phi)$ efficiently.					
	instantiation				
Given ψ : $E_1 \rightarrow E_2$, fin $aP_1 + bQ_1$ for P a gene	and a, b such that $P =$ erator of ker $(\psi)[\ell^n]$.				



▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

	Our Axioms ○○○○○○○○○●○○○○○	Conclusion
Walkability		

There exists a randomized algorithm, Walkable, that on input an object A returns an object B and a morphism $\psi : A \to B$ such that Bfollows distribution μ and $fp(\psi) \in \mathcal{M}$.

Motivation	Background	Our Axioms	Protocols	Conclusion
00		0000000000000000	0000	00
Walkability				

There exists a randomized algorithm, Walkable, that on input an object A returns an object B and a morphism $\psi : A \to B$ such that Bfollows distribution μ and $fp(\psi) \in \mathcal{M}$.

instantiation

Random walk in the ℓ -isogney graph. A random walk in the ℓ -isogeny graph. Due to the rapid mixing properties of the ℓ -isogeny graph, the target curve, E_B , follows the uniform distribution.

Motivation 00	Our Axioms 0000000000000000	Conclusion
Hard		

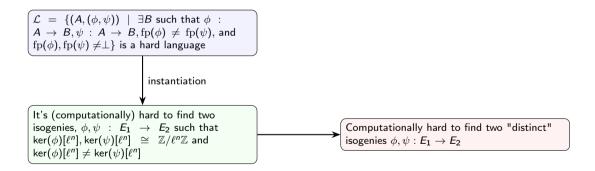
 $\begin{array}{l} \mathcal{L} \ = \ \{(A, (\phi, \psi)) \ | \ \exists B \text{ such that } \phi : \\ A \rightarrow B, \psi : A \rightarrow B, \operatorname{fp}(\phi) \neq \operatorname{fp}(\psi), \text{ and} \\ \operatorname{fp}(\phi), \operatorname{fp}(\psi) \neq \bot\} \text{ is a hard language} \end{array}$

Motivation 00	Our Axioms	
Hard		

◆□ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @

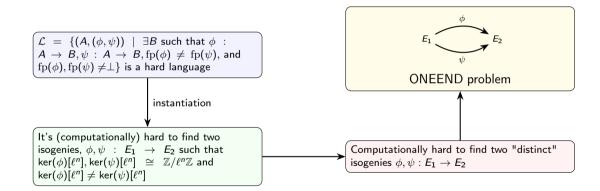
$egin{array}{rl} \mathcal{L} &= \{(\mathcal{A},(\phi,\psi)) \mid \in \mathcal{A} \ arrow B,\psi: \mathcal{A} ightarrow B, \ \mathrm{fp}(\phi),\mathrm{fp}(\psi) eq eta\} ext{ is a} \end{array}$	$\operatorname{fp}(\phi) eq \operatorname{fp}(\psi), and$
	instantiation
It's (computationally) isogenies, $\phi, \psi : E_1$ ker $(\phi)[\ell^n]$, ker $(\psi)[\ell^n]$ ker $(\phi)[\ell^n] \neq ker(\psi)[\ell^n]$	$ ightarrow E_2$ such that $\cong \mathbb{Z}/\ell^n\mathbb{Z}$ and

Motivation	Background	Our Axioms	Protocols	Conclusion
00	000	0000000000000000	0000	
Hard				

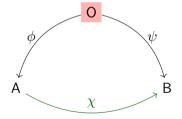


▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ▶ ④ ヘ ()

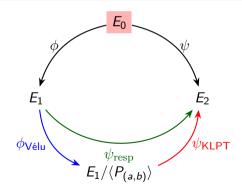
Motivation 00	Background	Our Axioms 0000000000000000	Protocols 0000	Conclusion
Hard				



There exists an efficient polynomial time algorithm, Triangle, that on inputs $\phi: O \to A, \psi: O \to B, m \in \mathcal{M}$, returns $\chi: A \to B$ such that $fp(\chi) = m$.

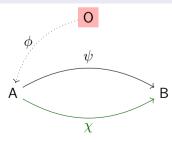


Input: $\phi, \psi, (a, b)$ 1. Compute $\phi_{V\acute{e}lu} : E_1 \to E_1/\langle P_{(a,b)} \rangle$ using Vélu's formulas. 2. Let ℓ' be a prime coprime to ℓ . Use KLPT $(\phi_{V\acute{e}lu} \circ \phi, \psi, \ell')$ to compute $\psi_{\text{KLPT}} : E_1/\langle P_{(a,b)} \rangle \to E_2$ of degree ℓ' . Return: $\psi_{\text{resp}} = \psi_{\text{KLPT}} \circ \phi_{V\acute{e}lu}$



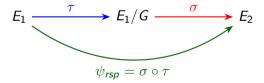
There exists an efficient polynomial time algorithm IndWalk such that for any $\phi: O \rightarrow A$, the output of IndWalk(A) is (perfectly, statistically, or computationally) indistinguishable from the following distribution:

- 1. Run $(B, \psi) \leftarrow \mathcal{W}(A)$.
- 2. Sample *m* from \mathcal{M} with distribution μ : $m \stackrel{\$}{\leftarrow} \mu(\mathcal{M})$.
- 3. Return $\chi \leftarrow \text{Triangle}(\phi, \psi \circ \phi, m)$, where $\chi : A \rightarrow B$ such that $\text{fp}(\chi) = m$.



Instantiated Indistinguishable Walkability

Input: E_1 1. Sample $G \subseteq E_1[\ell^n]$ such that $G \cong \mathbb{Z}/\ell^n\mathbb{Z}$ 2. Use Vélu's formulas to compute τ : $E_1 \to E_1/G$ 3. Take a random walk in the ℓ' -isogeny graph from E_1/G : $(E_2, \sigma) \leftarrow Walk(E_1/G, n)$ Return: $\psi_{rsp} = \sigma \circ \tau$, where ψ_{rsp} : $E_1 \to E_2$

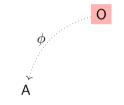


▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三回 - のへで

Protocols

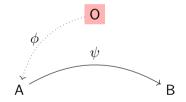
Motivation 00		Our Axioms	Protocols 0●00	Conclusion
Basic Signature	Э			

• KeyGen. Run $(A, \phi) \leftarrow Walk(O)$, return A as the public key and ϕ as the secret key.



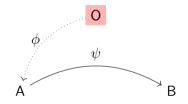
Motivation 00	Background	Our Axioms 000000000000000	Protocols 0●00	Conclusion
Basic Signatur	e			

- KeyGen. Run $(A, \phi) \leftarrow Walk(O)$, return A as the public key and ϕ as the secret key.
- **Commitment.** Run $(B, \psi) \leftarrow Walk(A)$, and return *B* as the commitment object.



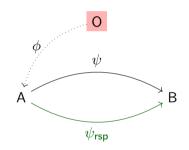
Motivation 00		Protocols 0●00	
Basic Signatur	e		

- KeyGen. Run $(A, \phi) \leftarrow Walk(O)$, return A as the public key and ϕ as the secret key.
- **Commitment.** Run $(B, \psi) \leftarrow Walk(A)$, and return *B* as the commitment object.
- Challenge. Verifier selects a random fingerprint $m \in C$ and sends this fingerprint to the Signer.



Motivation	Background	Our Axioms 000000000000000	Protocols 0●00	Conclusion 00
Basic Signatur	ے م			

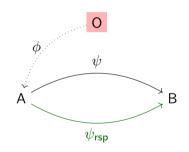
- KeyGen. Run $(A, \phi) \leftarrow Walk(O)$, return A as the public key and ϕ as the secret key.
- **Commitment.** Run $(B, \psi) \leftarrow Walk(A)$, and return *B* as the commitment object.
- Challenge. Verifier selects a random fingerprint $m \in C$ and sends this fingerprint to the Signer.
- **Response.** Run $\psi_{rsp} \leftarrow \text{Triangle}(\phi, \psi \circ \phi, m)$ to obtain a morphism ψ_{rsp} such that $fp(\psi_{rsp}) = m$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Motivation	Background	Our Axioms 000000000000000	Protocols 0●00	Conclusion
Basic Signatu	re			

- KeyGen. Run $(A, \phi) \leftarrow Walk(O)$, return A as the public key and ϕ as the secret key.
- **Commitment.** Run $(B, \psi) \leftarrow Walk(A)$, and return *B* as the commitment object.
- Challenge. Verifier selects a random fingerprint $m \in C$ and sends this fingerprint to the Signer.
- **Response.** Run $\psi_{rsp} \leftarrow \text{Triangle}(\phi, \psi \circ \phi, m)$ to obtain a morphism ψ_{rsp} such that $fp(\psi_{rsp}) = m$.
- Verification. Verify $fp(\psi_{rsp}) = m$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Motivation Background Our Axioms Protocols Conclusion

Remarks on Basic Signature

• Emulates SQIsign.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

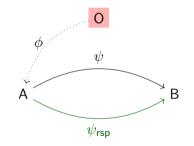
Remarks on Basic Signature

• Emulates SQIsign.

• In classical SQIsign, the challenge step prescribes an isogeny, but in the running example, the challenge step prescribes a kernel. BUT prescribing a kernel = prescribing an isogeny.

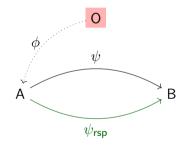
Motivation 00		Protocols 000●	Conclusion
Secure?			

• Secret key, ϕ , hard to recover \checkmark (Hard and Triangularizability)



Motivation	Background	Our Axioms	Protocols	Conclusion
00	000	00000000000000	000●	
Secure?				

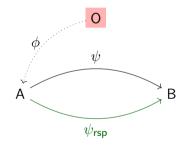
- Secret key, ϕ , hard to recover \checkmark (Hard and Triangularizability)
- Special soundness \checkmark (B, m, ψ_{rsp}), (B, m', ψ'_{rsp}) \rightarrow ($A, (\psi_{rsp}, \psi'_{rsp})$) $\in \mathcal{L}$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

		Protocols 000●	Conclusion
Secure?			

- Secret key, ϕ , hard to recover \checkmark (Hard and Triangularizability)
- Special soundness \checkmark (B, m, ψ_{rsp}), (B, m', ψ'_{rsp}) \rightarrow ($A, (\psi_{rsp}, \psi'_{rsp})$) $\in \mathcal{L}$
- Zero Knowledge √ (IndWalk)



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation

Background

Our Axioms

Protocol 0000 Conclusion

Conclusion

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ ○ ○

Motivation 00		Conclusion ○●
Conclusion		

• Just exploiting the axioms we can define SQIsign.

Motivation	Background	Our Axioms	Protocols 0000	Conclusion
Conclusion				

- Just exploiting the axioms we can define SQIsign.
- Can we instantiate the axioms differently to obtain different properties? Yes, we can work with levels.

	Background	Our Axioms 000000000000000	Protocols 0000	Conclusion ○●
Conclusion				

- Just exploiting the axioms we can define SQIsign.
- Can we instantiate the axioms differently to obtain different properties? Yes, we can work with levels.
- Can we obtain other protocols besides than digital signature schemes? Yes, we also obtain a chamaeleon hash function.