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Motivation

e There are several versions of SQIsign, all with the same structure, so we want to
extract what's essential.
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Motivation

e There are several versions of SQIsign, all with the same structure, so we want to
extract what's essential.

e SQIsign without all the algebraic machinery - more accessible conceptually.

e A new perspective to formalize such concepts using category theory.
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Introduction to Categories

A (small) category is defined by a set of objects and a set of morphisms with the
following properties:

1. Every morphism ¢ has a domain object D ¢ s C
D and a codomain object C, denoted by

¢:D— C.
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Introduction to Categories

A (small) category is defined by a set of objects and a set of morphisms with the
following properties:

1. Every morphism ¢ has a domain object D ¢ s C
D and a codomain object C, denoted by
¢:D— C.
. . : D C
2. The set of all morphisms with domain D
and codomain C is denoted by
Hom(D, C); this is called a homset. “ — _

Hom(D, C)
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Introduction to Categories

3. There exists a composition law, written ¢ Y
o, that maps a morphism ¢ : A — B and a
morphism 1) : B — C to a morphism
Yo¢: A— C, and that is associative:

(po)ox=¢o(vox).
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Introduction to Categories

3. There exists a composition law, written A ¢ B Y C
o, that maps a morphism ¢ : A — B and a
morphism 1) : B — C to a morphism bod

Y o¢:A— C, and that is associative:

(po)ox=¢o(vox).

4. For every object A, there exists a 1a

morphism 14 : A — A such that 140¢ = ¢ A » A
and @ o1y =1 for every ¢ : Z — A and

every ¢ : A— B.
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[Intuitive Axioms

A cryptographic category must satisfy the following computational axioms:
e Uniqueness
e Origin
o Walk
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A Running Example - Classical SQlsign

Fix a large N € Z and a large prime p.

e Objects: Pairs of supersingular elliptic curves over IF» together with their N-torsion
points, (E, E[N]).

e Morphisms: Isogenies between the elliptic curves, ¢ : E — E’.
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Uniqueness

Every object and every morphism has a unique
representation as a binary string
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Uniqueness

Every object and every morphism has a unique
representation as a binary string

instantiation

v
e For unique representation of the objects, use
the j-invariants for the isomorphism classes of
elliptic curves, together with a basis of E[N].
e For the unique representation of isogenies,
use a deterministic algorithm to pick 2-torsion
points, 3-torsion points, --- log N-torsion
points and use interpolation to put everything
together.

Conclusion
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Origin

There exists an origin object O whose repre-
sentation is known.
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Origin

There exists an origin object O whose repre-
sentation is known.

instantiation

¥
Given p a prime, there always exists a polyno-
mial time algorithm to find an origin curve Eo,
of known endomorphism ring.
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Walk

Definition

A walk, W, is a deterministic algorithm which takes as input an object A and random
coins r and produces a morphism 1) : A — B. When r is uniformly random coins, B
follows distribution r.. Moreover, W(A) := W(A; r) is a randomized algorithm for r

uniformly random coins.
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Walk

Definition

A walk, W, is a deterministic algorithm which takes as input an object A and random
coins r and produces a morphism 1) : A — B. When r is uniformly random coins, B
follows distribution r.. Moreover, W(A) := W(A; r) is a randomized algorithm for r

uniformly random coins.

There exists a walk in the category
called Walk.
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Motivation
00

Walk

Definition

A walk, W, is a deterministic algorithm which takes as input an object A and random
coins r and produces a morphism 1) : A — B. When r is uniformly random coins, B
follows distribution r.. Moreover, W(A) := W(A; r) is a randomized algorithm for r

uniformly random coins.

A random walk in the /-isogeny

graph. Due to the rapid mixing

properties of the /-isogeny graph,

callas Bl the target curve, Eg, follows the uni-
form distribution.

There exists a walk in the category
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The fingerprint

A fingerprint, fp, is a collection of maps:
fp : Hom(—,—) - MU{L}

where | indicates undefined values.
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Instantiation to elliptic curves

Let ¢ : E; — E» be an isogeny, ¢ a small prime and ker(y)) N E1[¢"] = ker(¢)[¢"]

ker()[€7], if ker(v)[€"] = Z/0"Z

4, otherwise.

prefp(y) = {
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Instantiation to elliptic curves

Let ¢ : E; — E» be an isogeny, ¢ a small prime and ker(y)) N E1[¢"] = ker(¢)[¢"]

ker()[€7], if ker(v)[€"] = Z/0"Z

4, otherwise.

prefp(y) = {

However,

ker(¢)[€"] = (P) = (aP1 + bQy).
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Instantiation to elliptic curves

Let ¢ : E; — E» be an isogeny, ¢ a small prime and ker(y)) N E1[¢"] = ker(¢)[¢"]

ker()[€7], if ker(v)[€"] = Z/0"Z

4, otherwise.

prefp(y) = {

However,

ker(¢)[€"] = (P) = (aP1 + bQy).

_J@,atp), ifae(z/tz)*
qu_{@*an,ﬁa¢@M%YAbE@M%Y.
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Not So Intuitive Axioms

We want the fingerprint to have some, if not all of the following properties, depending
on which protocol we want to obtain:

e Evaluatable

o Walkability

e Hard

e Triangularizability

e Indistinguishable Walkability
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Evaluatable

(Given ¢, one can find fp(¢) efficiently. J
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Evaluatable

(Given ¢, one can find fp(¢) efficiently. J

instantiation

\
Given ¢ : E; — E», find a, b such that P =
aP; + bQ; for P a generator of ker(¢)[£"].

Conclusion
[e]e]
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Evaluatable

(Given ¢, one can find fp(¢) efficiently. )

instantiation

\
Given ¢ : E; — E», find a, b such that P =
aP; + bQ; for P a generator of ker(¢)[£"].

equivalent

Y
(e—smooth DLP for Elliptic Curves )
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Walkability

There exists a randomized algorithm, Walkable,
that on input an object A returns an object

B and a morphism ¢ : A — B such that B
follows distribution p and fp(¢)) € M.

Conclusion
[e]e]
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Walkability

There exists a randomized algorithm, Walkable,
that on input an object A returns an object

B and a morphism ¢ : A — B such that B
follows distribution p and fp(¢)) € M.

instantiation

M
Random walk in the ¢-isogney graph. A ran-
dom walk in the f-isogeny graph. Due to the
rapid mixing properties of the (-isogeny graph,
the target curve, Eg, follows the uniform distri-
bution.

Conclusion
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Hard

(A, (¢,%)) | 3B such that ¢ :
0 A — B, fp(¢) # fp(y), and
p(¢¥)) #L1} is a hard language

£
A

b
"hm,_,‘“

fp(

S

)7
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Hard

L = {(A, (¢,%)) | 3B such that ¢ :
A — B,y A— B fp(¢) # fp(¢), and
fp(#), fp() #L} is a hard language

instantiation

Y
It's (computationally) hard to find two
isogenies, ¢,1 : Ei1 — E3 such that
ker(¢)[€"], ker(¢)[¢"] = Z/¢"Z and
ker()[£"] # ker()[€"]
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Hard

L = {(A, (¢,%)) | 3B such that ¢ :
A — B,y A— B fp(¢) # fp(¢), and
fp(#), fp() #L} is a hard language

instantiation

Y
It's (computationally) hard to find two

isogenies, ¢, : E1 — Ep such that Computationally hard to find two "distinct"
ker(¢)[€"], ker(¢)[£"] =2 Z/£"Z and

isogenies ¢, : E; — Ep
ker(¢)[£"] # ker(4)[£7]




Motivation Background Our Axioms
oo 000

Protocols
00000000000 e0000

Conclusion
0000

Hard

[

£ = {(A(6.%)) | 3B such that ¢ O
= PR such that i 1 >
A — B,¢: A — B,fp(¢) # fp(¢), and \1/,]
fp(#), fp() #L} is a hard language
ONEEND problem
instantiation A
Y

It's (computationally) hard to find two
isogenies, ¢,¢ : E; — E> such that Computationally hard to find two "distinct"
ker(¢)[€], ker(¥)[€"] = Z/¢"Z and isogenies ¢, : E; — Ex

ker(¢)[€"] # ker(4)[¢"]
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Triangularizability

There exists an efficient polynomial time algorithm, Triangle, that on inputs
d:0—=AY:0— B,me M, returns x : A — B such that fp(y) = m.

o
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Instantiated Triangle

Input: ¢,%, (a, b)

1. Compute @veiy : E1 — E1/(P(,,p)) using Vélu's formulas.

2. Let ¢’ be a prime coprime to £. Use KLPT(¢vel, © ¢,%,£") to compute
iﬁKLpT 5 E1/<P(a,b)> — Ex of degree Vi

Return: vresp = YKLPT © Pvelu

Eo

E1 E2

¢Vé|u\\/w

wresp
E1/(Pa,))

KLPT

Protocols
0000

Conclusion
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Indistinguishable Walkability

There exists an efficient polynomial time algorithm IndWalk such that for any
¢ O — A, the output of IndWalk(A) is (perfectly, statistically, or computationally)
indistinguishable from the following distribution:

1. Run (B,¢) + W(A).
2. Sample m from M with distribution pu: m & pu(M).
3. Return x < Triangle(¢, o ¢, m), where x : A — B such that fp(x) = m.

A B
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Instantiated Indistinguishable Walkability

Input: E;

1. Sample G C E1[¢"] such that G = Z/¢"Z

2. Use Vélu's formulas to compute 7: E; — E1/G

3. Take a random walk in the #'-isogeny graph from E;/G:
(E2,0) + Walk(E1/G, n)

Return: ¢, = 0 o 7, where ¥p: E1 — Ea

E—>F/6G—2 > F

wrsp:UOT
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Basic Signature

e KeyGen. Run (A, ¢) «+ Walk(O), return A as
the public key and ¢ as the secret key.

>,

Conclusion
[e]e]
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Basic Signature

e KeyGen. Run (A, ¢) «+ Walk(O), return A as
the public key and ¢ as the secret key.

e Commitment. Run (B, 1) < Walk(A), and s
return B as the commitment object. ®
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Basic Signature

e KeyGen. Run (A, ¢) «+ Walk(O), return A as
the public key and ¢ as the secret key.

e Commitment. Run (B, 1) < Walk(A), and -0
return B as the commitment object. ¢
e Challenge. Verifier selects a random fingerprint (&

m € C and sends this fingerprint to the Signer.
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Basic Signature

e KeyGen. Run (A, ¢) «+ Walk(O), return A as

the public key and ¢ as the secret key. .0
e Commitment. Run (B, 1) < Walk(A), and g[)
return B as the commitment object. (0

e Challenge. Verifier selects a random fingerprint

m € C and sends this fingerprint to the Signer. A \_/ B

¢ Response. Run s, < Triangle(¢, 9 o ¢, m) to
obtain a morphism s, such that fp(¢rsp) = m.
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Basic Signature

e KeyGen. Run (A, ¢) «+ Walk(O), return A as

the public key and ¢ as the secret key. .0
e Commitment. Run (B, 1) < Walk(A), and g[)
return B as the commitment object. (0

e Challenge. Verifier selects a random fingerprint

m € C and sends this fingerprint to the Signer. A \_/ B

¢ Response. Run s, < Triangle(¢, 9 o ¢, m) to
obtain a morphism s, such that fp(¢rsp) = m.

e Verification. Verify fp(tysp) = m.
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Remarks on Basic Signature

e Emulates SQlsign.
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Remarks on Basic Signature

e Emulates SQlsign.

e In classical SQIsign, the challenge step prescribes an isogeny, but in the running
example, the challenge step prescribes a kernel. BUT prescribing a kernel =
prescribing an isogeny.
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Secure?

e Secret key, ¢, hard to recover v/ 0
(Hard and Triangularizability) b
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Secure?

e Secret key, ¢, hard to recover v/ 0

(Hard and Triangularizability) b

e Special soundness v/ (&
(vavwrsp)a(Ba mlvwl{sp) - (A7 (¢rspa¢£sp)) € \;/_\
L A B
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Secure?

e Secret key, ¢, hard to recover v/ 0

(Hard and Triangularizability) b

e Special soundness v/ (&
(B7m7wrsp)a(Ba mlvwl{sp) - (A7 (¢rspa¢£sp)) € /_\

L A B
e Zero Knowledge v/ "
(IndWalk) rsp
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Conclusion
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Conclusion

e Just exploiting the axioms we can define SQlsign.

e Can we instantiate the axioms differently to obtain different properties?
Yes, we can work with levels.
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Conclusion

e Just exploiting the axioms we can define SQlsign.
e Can we instantiate the axioms differently to obtain different properties?
Yes, we can work with levels.

e Can we obtain other protocols besides than digital signature schemes?
Yes, we also obtain a chamaeleon hash function.
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