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Motivation

• There are several versions of SQIsign, all with the same structure, so we want to
extract what’s essential.

• SQIsign without all the algebraic machinery - more accessible conceptually.
• A new perspective to formalize such concepts using category theory.
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Introduction to Categories

A (small) category is defined by a set of objects and a set of morphisms with the
following properties:

1. Every morphism ϕ has a domain object
D and a codomain object C , denoted by
ϕ : D → C .

2. The set of all morphisms with domain D
and codomain C is denoted by
Hom(D,C ); this is called a homset.

D C
ϕ

D C

Hom(D,C )



Motivation Background Our Axioms Protocols Conclusion

Introduction to Categories

A (small) category is defined by a set of objects and a set of morphisms with the
following properties:

1. Every morphism ϕ has a domain object
D and a codomain object C , denoted by
ϕ : D → C .

2. The set of all morphisms with domain D
and codomain C is denoted by
Hom(D,C ); this is called a homset.

D C
ϕ

D C

Hom(D,C )



Motivation Background Our Axioms Protocols Conclusion

Introduction to Categories

3. There exists a composition law, written
◦, that maps a morphism ϕ : A→ B and a
morphism ψ : B → C to a morphism
ψ ◦ ϕ : A→ C , and that is associative:
(ϕ ◦ ψ) ◦ χ = ϕ ◦ (ψ ◦ χ).

4. For every object A, there exists a
morphism 1A : A→ A such that 1A ◦ϕ = ϕ
and ψ ◦ 1A = ψ for every ϕ : Z → A and
every ψ : A→ B .

A B C
ϕ ψ

ψ ◦ ϕ

A A
1A
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Our Axioms
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Intuitive Axioms

A cryptographic category must satisfy the following computational axioms:
• Uniqueness
• Origin
• Walk
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A Running Example - Classical SQIsign

Fix a large N ∈ Z and a large prime p.

• Objects: Pairs of supersingular elliptic curves over Fp2 together with their N-torsion
points, (E ,E [N]).

• Morphisms: Isogenies between the elliptic curves, ψ : E → E ′.
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Uniqueness

Every object and every morphism has a unique
representation as a binary string

• For unique representation of the objects, use
the j-invariants for the isomorphism classes of
elliptic curves, together with a basis of E [N].
• For the unique representation of isogenies,
use a deterministic algorithm to pick 2-torsion
points, 3-torsion points, · · · logN-torsion
points and use interpolation to put everything
together.

instantiation
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Origin

There exists an origin object O whose repre-
sentation is known.

Given p a prime, there always exists a polyno-
mial time algorithm to find an origin curve E0,
of known endomorphism ring.

instantiation
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Walk

Definition
A walk, W, is a deterministic algorithm which takes as input an object A and random
coins r and produces a morphism ψ : A→ B . When r is uniformly random coins, B
follows distribution µ. Moreover, W(A) :=W(A; r) is a randomized algorithm for r
uniformly random coins.

There exists a walk in the category
called Walk.

A random walk in the ℓ-isogeny
graph. Due to the rapid mixing
properties of the ℓ-isogeny graph,
the target curve, EB , follows the uni-
form distribution.
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The fingerprint

Definition
A fingerprint, fp, is a collection of maps:

fp : Hom(−,−)→M∪ {⊥}

where ⊥ indicates undefined values.
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Instantiation to elliptic curves

Let ψ : E1 → E2 be an isogeny, ℓ a small prime and ker(ψ) ∩ E1[ℓ
n] = ker(ψ)[ℓn]

prefp(ψ) =

{
ker(ψ)[ℓn], if ker(ψ)[ℓn] ∼= Z/ℓnZ
⊥, otherwise.

However,
ker(ψ)[ℓn] = ⟨P⟩ = ⟨aP1 + bQ1⟩.

Definition

fp(ψ) =

{
(1, a−1b), if a ∈ (Z/ℓnZ)×

(b−1a, 1), if a /∈ (Z/ℓnZ)× ∧ b ∈ (Z/ℓnZ)×.
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Not So Intuitive Axioms

We want the fingerprint to have some, if not all of the following properties, depending
on which protocol we want to obtain:

• Evaluatable
• Walkability
• Hard
• Triangularizability
• Indistinguishable Walkability
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Evaluatable

Given ϕ, one can find fp(ϕ) efficiently.

Given ψ : E1 → E2, find a, b such that P =
aP1 + bQ1 for P a generator of ker(ψ)[ℓn].

instantiation

ℓ−smooth DLP for Elliptic Curves

equivalent
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Walkability

There exists a randomized algorithm, Walkable,
that on input an object A returns an object
B and a morphism ψ : A → B such that B
follows distribution µ and fp(ψ) ∈M.

Random walk in the ℓ-isogney graph. A ran-
dom walk in the ℓ-isogeny graph. Due to the
rapid mixing properties of the ℓ-isogeny graph,
the target curve, EB , follows the uniform distri-
bution.

instantiation
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Hard

L = {(A, (ϕ, ψ)) | ∃B such that ϕ :
A → B, ψ : A → B, fp(ϕ) ̸= fp(ψ), and
fp(ϕ), fp(ψ) ̸=⊥} is a hard language

It’s (computationally) hard to find two
isogenies, ϕ, ψ : E1 → E2 such that
ker(ϕ)[ℓn], ker(ψ)[ℓn] ∼= Z/ℓnZ and
ker(ϕ)[ℓn] ̸= ker(ψ)[ℓn]

instantiation

Computationally hard to find two "distinct"
isogenies ϕ, ψ : E1 → E2

E1 E2

ϕ

ψ

ONEEND problem
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Triangularizability

There exists an efficient polynomial time algorithm, Triangle, that on inputs
ϕ : O → A, ψ : O → B,m ∈M, returns χ : A→ B such that fp(χ) = m.

O

A B

ϕ ψ

χ
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Instantiated Triangle

Input: ϕ, ψ, (a, b)
1. Compute ϕVélu : E1 → E1/⟨P(a,b)⟩ using Vélu’s formulas.
2. Let ℓ′ be a prime coprime to ℓ. Use KLPT(ϕVélu ◦ ϕ, ψ, ℓ′) to compute

ψKLPT : E1/⟨P(a,b)⟩ → E2 of degree ℓ′.
Return: ψresp = ψKLPT ◦ ϕVélu

E0

E1 E2

E1/⟨P(a,b)⟩

ϕ ψ

ϕVélu ψKLPT
ψresp
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Indistinguishable Walkability

There exists an efficient polynomial time algorithm IndWalk such that for any
ϕ : O → A, the output of IndWalk(A) is (perfectly, statistically, or computationally)
indistinguishable from the following distribution:

1. Run (B, ψ)←W(A).

2. Sample m fromM with distribution µ: m
$←− µ(M).

3. Return χ← Triangle(ϕ, ψ ◦ ϕ,m), where χ : A→ B such that fp(χ) = m.

O

A B

ϕ
ψ

χ
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Instantiated Indistinguishable Walkability

Input: E1
1. Sample G ⊆ E1[ℓn] such that G ∼= Z/ℓnZ
2. Use Vélu’s formulas to compute τ : E1 → E1/G
3. Take a random walk in the ℓ′-isogeny graph from E1/G :

(E2, σ)←Walk(E1/G , n)
Return: ψrsp = σ ◦ τ , where ψrsp : E1 → E2

E1 E1/G E2
τ σ

ψrsp = σ ◦ τ
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Protocols
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Basic Signature

• KeyGen. Run (A, ϕ)←Walk(O), return A as
the public key and ϕ as the secret key.

• Commitment. Run (B, ψ)←Walk(A), and
return B as the commitment object.

• Challenge. Verifier selects a random fingerprint
m ∈ C and sends this fingerprint to the Signer.

• Response. Run ψrsp ← Triangle(ϕ, ψ ◦ ϕ,m) to
obtain a morphism ψrsp such that fp(ψrsp) = m.

• Verification. Verify fp(ψrsp) = m.

O

A

ϕ
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Remarks on Basic Signature

• Emulates SQIsign.

• In classical SQIsign, the challenge step prescribes an isogeny, but in the running
example, the challenge step prescribes a kernel. BUT prescribing a kernel =
prescribing an isogeny.



Motivation Background Our Axioms Protocols Conclusion

Remarks on Basic Signature

• Emulates SQIsign.
• In classical SQIsign, the challenge step prescribes an isogeny, but in the running
example, the challenge step prescribes a kernel. BUT prescribing a kernel =
prescribing an isogeny.



Motivation Background Our Axioms Protocols Conclusion

Secure?

• Secret key, ϕ, hard to recover ✓
(Hard and Triangularizability)

• Special soundness ✓
(B,m, ψrsp), (B,m

′, ψ′rsp)→ (A, (ψrsp, ψ
′
rsp)) ∈

L
• Zero Knowledge ✓
(IndWalk)

O

A B

ϕ
ψ

ψrsp
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Conclusion

• Just exploiting the axioms we can define SQIsign.

• Can we instantiate the axioms differently to obtain different properties?
Yes, we can work with levels.
• Can we obtain other protocols besides than digital signature schemes?
Yes, we also obtain a chamaeleon hash function.
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