Quaternionic multiplication and abelian fourfolds

Enric Florit

Universitat de Barcelona

The SQIparty 2025

• Which quaternion algebras can act on a given abelian variety?

• Which quaternion algebras can act on a given abelian variety?

• If a quaternion algebra acts on an abelian variety, what properties does it force on it?

Which quaternion algebras can act on a given abelian variety?
 E/F_q: only D_{p,∞}

• If a quaternion algebra acts on an abelian variety, what properties does it force on it?

Which quaternion algebras can act on a given abelian variety?
 E/F_q: only D_{p,∞}

If a quaternion algebra acts on an abelian variety, what properties does it force on it?
 E/F_q: E supersingular, E[p] = 0.

Problem A

- k number field, A/k simple abelian variety, Σ_A =primes of good red.
- $\mathfrak{p} \in \Sigma_A \rightsquigarrow A_\mathfrak{p} := A \mod \mathfrak{p}.$
- Say A_p splits if $A_p \sim A_1 \times A_2$; simple otherwise.

Problem A

- k number field, A/k simple abelian variety, Σ_A =primes of good red.
- $\mathfrak{p} \in \Sigma_A \rightsquigarrow A_\mathfrak{p} := A \mod \mathfrak{p}.$
- Say A_p splits if $A_p \sim A_1 \times A_2$; simple otherwise.
- Suppose End⁰(A) := End(A) ⊗ Q is non-commutative.

Problem A

- k number field, A/k simple abelian variety, Σ_A =primes of good red.
- $\mathfrak{p} \in \Sigma_A \rightsquigarrow A_\mathfrak{p} := A \mod \mathfrak{p}.$
- Say A_p splits if $A_p \sim A_1 \times A_2$; simple otherwise.
- Suppose End⁰(A) := End(A) ⊗ ℚ is non-commutative.
- Murty-Patankar Problem: characterize the set

$$S = \{ \mathfrak{p} \in \Sigma_A \colon A_\mathfrak{p} \text{ is simple} \}$$

Problem A

- k number field, A/k simple abelian variety, Σ_A =primes of good red.
- $\mathfrak{p} \in \Sigma_A \rightsquigarrow A_\mathfrak{p} := A \mod \mathfrak{p}.$
- Say A_p splits if $A_p \sim A_1 \times A_2$; simple otherwise.
- Suppose End⁰(A) := End(A) ⊗ Q is non-commutative.
- Murty-Patankar Problem: characterize the set

$$S = \{ \mathfrak{p} \in \Sigma_A \colon A_\mathfrak{p} \text{ is simple} \}$$

For $\mathfrak{p} \in \Sigma_A$, there is a "reduction embedding"

$$\operatorname{End}^{0}(A) \to \operatorname{End}^{0}(A_{\mathfrak{p}}).$$

We will relate the two algebras and study whether $\text{End}^{0}(A_{\mathfrak{p}})$ is division or contains zero-divisors.

Enric Florit (UB)

Let A/k be a simple abelian surface with $D = \text{End}^0(A)$ indefinite quaternion algebra.

A classical theorem

Theorem (Morita, Yoshida, 70s)

Let A/k be a simple abelian surface with $D = \text{End}^0(A)$ indefinite quaternion algebra.

If A_p is simple, then D ramifies at p.

Let A/k be a simple abelian surface with $D = \text{End}^{0}(A)$ indefinite quaternion algebra.

If A_p is simple, then D ramifies at p.

 $\rightsquigarrow S = \{ \mathfrak{p} \in \Sigma_A \colon A_\mathfrak{p} \text{ is simple} \} \text{ is finite}.$

Let A/k be a simple abelian surface with $D = \text{End}^{0}(A)$ indefinite quaternion algebra.

If A_p is simple, then D ramifies at p.

 $\rightsquigarrow S = \{ \mathfrak{p} \in \Sigma_{\mathcal{A}} \colon \mathcal{A}_{\mathfrak{p}} \text{ is simple} \} \text{ is finite}.$

Proof. Let π be Frobenius on A_p . We reason by cases on $\mathbb{Q}(\pi)$.

Let A/k be a simple abelian surface with $D = \text{End}^{0}(A)$ indefinite quaternion algebra.

If A_p is simple, then D ramifies at p.

 $\rightsquigarrow S = \{ \mathfrak{p} \in \Sigma_{\mathcal{A}} \colon \mathcal{A}_{\mathfrak{p}} \text{ is simple} \} \text{ is finite}.$

Proof. Let π be Frobenius on A_p . We reason by cases on $\mathbb{Q}(\pi)$. • $\mathbb{Q}(\pi) = \mathbb{Q} \implies A \sim E^2$, supersingular.

Let A/k be a simple abelian surface with $D = \text{End}^{0}(A)$ indefinite quaternion algebra.

If A_p is simple, then D ramifies at p.

 $\rightsquigarrow S = \{ \mathfrak{p} \in \Sigma_A \colon A_\mathfrak{p} \text{ is simple} \} \text{ is finite}.$

Proof. Let π be Frobenius on $A_{\mathfrak{p}}$. We reason by cases on $\mathbb{Q}(\pi)$.

•
$$\mathbb{Q}(\pi) = \mathbb{Q} \implies A \sim E^2$$
, supersingular.

• $\mathbb{Q}(\pi) = \text{imag. quadr., can show}$

 $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \simeq \operatorname{End}^{0}(A_{\mathfrak{p}}).$

Let A/k be a simple abelian surface with $D = \text{End}^{0}(A)$ indefinite quaternion algebra.

If A_p is simple, then D ramifies at p.

 $\rightsquigarrow S = \{ \mathfrak{p} \in \Sigma_{\mathcal{A}} \colon \mathcal{A}_{\mathfrak{p}} \text{ is simple} \} \text{ is finite}.$

Proof. Let π be Frobenius on A_p . We reason by cases on $\mathbb{Q}(\pi)$.

- $\mathbb{Q}(\pi) = \mathbb{Q} \implies A \sim E^2$, supersingular.
- $\mathbb{Q}(\pi) = \text{imag. quadr., can show}$

$$D\otimes_{\mathbb{Q}}\mathbb{Q}(\pi)\simeq \operatorname{End}^0(A_{\mathfrak{p}}).$$

If A_p simple, then $\operatorname{End}^0(A_p)$ ramifies at $p \implies D$ ramifies at p.

Let A/k be a simple abelian surface with $D = \text{End}^{0}(A)$ indefinite quaternion algebra.

If A_p is simple, then D ramifies at p.

 $\rightsquigarrow S = \{ \mathfrak{p} \in \Sigma_{\mathcal{A}} \colon \mathcal{A}_{\mathfrak{p}} \text{ is simple} \} \text{ is finite}.$

Proof. Let π be Frobenius on $A_{\mathfrak{p}}$. We reason by cases on $\mathbb{Q}(\pi)$.

• $\mathbb{Q}(\pi) = \mathbb{Q} \implies A \sim E^2$, supersingular.

• $\mathbb{Q}(\pi) = \text{imag. quadr., can show}$

$$D\otimes_{\mathbb{Q}}\mathbb{Q}(\pi)\simeq \operatorname{End}^0(A_{\mathfrak{p}}).$$

If A_p simple, then $\operatorname{End}^0(A_p)$ ramifies at $p \implies D$ ramifies at p. • $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{p})$ would also give

$$D \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{p}) \simeq \operatorname{End}^{0}(A_{\mathfrak{p}}).$$

But *D* is indefinite, while $\text{End}^{0}(A_{\mathfrak{p}})$ is definite (Tate).

In fact, we have almost solved the following problem:

Problem B

Let p prime, $q = p^r$, B/\mathbb{F}_q be an abelian surface. Let D/\mathbb{Q} an indefinite quaternion algebra.

- Characterize the existence of an embedding $\iota : D \to \operatorname{End}^0(B)$.
- 2 If ι exists, determine splitting and *p*-rank of *B*.

The proof of Morita-Yoshida gives the solution to Problem B for surfaces.

Theorem (Chia-Fu Yu)

Let D/\mathbb{Q} indefinite division quaternion algebra, B/\mathbb{F}_q abelian surface with embedding $D \to \text{End}^0(B)$. Then either

- $A \sim E^2$, with
 - $\operatorname{End}^{0}_{o}(A) \simeq \operatorname{Mat}_{2}(D_{p,\infty}), E$ supersingular, or
 - End⁰(A) \simeq Mat₂($\mathbb{Q}(\pi)$), $\mathbb{Q}(\pi)$ splitting D.
- **2** A simple, supersingular, with $\operatorname{End}^{0}(A) \simeq D \otimes \mathbb{Q}(\pi)$, $\mathbb{Q}(\pi)$ imaginary quadratic.

Solving Problem A

Let k number field, A/k simple abelian variety such that End(A) is non-commutative. Let $\Sigma_A \ni \mathfrak{p} \mid p$.

Let k number field, A/k simple abelian variety such that End(A) is non-commutative. Let $\Sigma_A \ni \mathfrak{p} \mid p$. If $A_\mathfrak{p}$ is simple, then $End^0(A)$ ramifies at a place over p.

Let k number field, A/k simple abelian variety such that End(A) is non-commutative. Let $\Sigma_A \ni \mathfrak{p} \mid p$. If $A_\mathfrak{p}$ is simple, then $End^0(A)$ ramifies at a place over p. $\rightsquigarrow S = \{\mathfrak{p} \in \Sigma_A : A_\mathfrak{p} \text{ simple}\}$ is **finite**.

If A_p is simple, then $\text{End}^0(A)$ ramifies at a place over p.

Theorem (F.)

If A_p is simple, then $\text{End}^0(A)$ ramifies at a place over p.

• Let $Z = Z(End^0(A))$, suppose A_p simple.

Theorem (F.)

If A_p is simple, then End⁰(A) ramifies at a place over p.

- Let $Z = Z(End^0(A))$, suppose A_p simple.
- We have an embedding $\iota : \operatorname{End}^0(A) \to \operatorname{End}^0(A_p)$.

Theorem (F.)

If A_p is simple, then End⁰(A) ramifies at a place over p.

- Let $Z = Z(End^0(A))$, suppose A_p simple.
- We have an embedding ι : $\operatorname{End}^{0}(A) \to \operatorname{End}^{0}(A_{\mathfrak{p}})$.
- The subalg. $Z(\pi) \subset \operatorname{End}^0(A_{\mathfrak{p}})$ generated by $\iota(Z)$ and $\mathbb{Q}(\pi)$ is a field.

Theorem (F.)

If A_p is simple, then End⁰(A) ramifies at a place over p.

- Let $Z = Z(End^0(A))$, suppose A_p simple.
- We have an embedding ι : End⁰(A) \rightarrow End⁰($A_{\mathfrak{p}}$).
- The subalg. $Z(\pi) \subset \operatorname{End}^0(A_{\mathfrak{p}})$ generated by $\iota(Z)$ and $\mathbb{Q}(\pi)$ is a field.
- The embedding ι can be extended to

$$\tilde{\iota}: \operatorname{End}^0(A) \otimes_Z Z(\pi) \to \operatorname{End}^0(A_{\mathfrak{p}}).$$

Theorem (F.)

If A_p is simple, then $\operatorname{End}^0(A)$ ramifies at a place over p.

- Let $Z = Z(End^0(A))$, suppose A_p simple.
- We have an embedding ι : $\operatorname{End}^0(A) \to \operatorname{End}^0(A_{\mathfrak{p}})$.
- The subalg. $Z(\pi) \subset \operatorname{End}^0(A_{\mathfrak{p}})$ generated by $\iota(Z)$ and $\mathbb{Q}(\pi)$ is a field.
- The embedding ι can be extended to

$$\tilde{\iota}: \operatorname{End}^0(A) \otimes_Z Z(\pi) \to \operatorname{End}^0(A_{\mathfrak{p}}).$$

 By the Double Centralizer Theorem, there is some t > 0 and a nontrivial equality in Br(Z(π)):

 $t[\operatorname{End}^{0}(A)\otimes_{Z}Z(\pi)]=t[\operatorname{End}^{0}(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)}Z(\pi)].$

Theorem (F.)

If A_p is simple, then $\text{End}^0(A)$ ramifies at a place over p.

- Let $Z = Z(End^0(A))$, suppose A_p simple.
- We have an embedding ι : $\operatorname{End}^{0}(A) \to \operatorname{End}^{0}(A_{\mathfrak{p}})$.
- The subalg. $Z(\pi) \subset \operatorname{End}^0(A_{\mathfrak{p}})$ generated by $\iota(Z)$ and $\mathbb{Q}(\pi)$ is a field.
- The embedding ι can be extended to

$$\tilde{\iota}: \operatorname{End}^{0}(A) \otimes_{Z} Z(\pi) \to \operatorname{End}^{0}(A_{\mathfrak{p}}).$$

 By the Double Centralizer Theorem, there is some t > 0 and a nontrivial equality in Br(Z(π)):

 $t[\operatorname{End}^{0}(A)\otimes_{Z}Z(\pi)]=t[\operatorname{End}^{0}(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)}Z(\pi)].$

• Can assume dim $A \ge 3$, so $\mathbb{Q}(\pi)$ CM field

Theorem (F.)

If A_p is simple, then $\text{End}^0(A)$ ramifies at a place over p.

- Let $Z = Z(End^0(A))$, suppose A_p simple.
- We have an embedding $\iota : \operatorname{End}^0(A) \to \operatorname{End}^0(A_p)$.
- The subalg. $Z(\pi) \subset \operatorname{End}^0(A_{\mathfrak{p}})$ generated by $\iota(Z)$ and $\mathbb{Q}(\pi)$ is a field.
- The embedding ι can be extended to

$$\tilde{\iota}: \operatorname{End}^0(A) \otimes_Z Z(\pi) \to \operatorname{End}^0(A_{\mathfrak{p}}).$$

 By the Double Centralizer Theorem, there is some t > 0 and a nontrivial equality in Br(Z(π)):

 $t[\operatorname{End}^{0}(A) \otimes_{Z} Z(\pi)] = t[\operatorname{End}^{0}(A_{\mathfrak{p}}) \otimes_{\mathbb{Q}(\pi)} Z(\pi)].$

• Can assume dim
$$A \ge 3$$
, so $\mathbb{Q}(\pi)$ CM field
 \implies End⁰(A_p) ramifies at p
Endic Electric (IIB) OM and fourfolds

Theorem (F.)

If A_p is simple, then $\text{End}^0(A)$ ramifies at a place over p.

- Let $Z = Z(End^0(A))$, suppose A_p simple.
- We have an embedding ι : $\operatorname{End}^{0}(A) \to \operatorname{End}^{0}(A_{\mathfrak{p}})$.
- The subalg. $Z(\pi) \subset \operatorname{End}^0(A_{\mathfrak{p}})$ generated by $\iota(Z)$ and $\mathbb{Q}(\pi)$ is a field.
- The embedding ι can be extended to

$$\tilde{\iota}: \operatorname{End}^0(A) \otimes_Z Z(\pi) \to \operatorname{End}^0(A_{\mathfrak{p}}).$$

 By the Double Centralizer Theorem, there is some t > 0 and a nontrivial equality in Br(Z(π)):

 $t[\operatorname{End}^{0}(A)\otimes_{Z}Z(\pi)]=t[\operatorname{End}^{0}(A_{\mathfrak{p}})\otimes_{\mathbb{Q}(\pi)}Z(\pi)].$

• Can assume dim
$$A \ge 3$$
, so $\mathbb{Q}(\pi)$ CM field
 $\implies \operatorname{End}^0(A_p)$ ramifies at $p \implies \operatorname{End}^0(A)$ ramifies at p .

Let k number field, A/k simple abelian variety such that End(A) is non-commutative.

Then, A splits modulo all but finitely many primes.

Let k number field, A/k simple abelian variety such that End(A) is non-commutative.

Then, A splits modulo all but finitely many primes.

Problem A'

- Can we say anything more about the set of simple reductions?
- Is it ever nonempty?

Some technicalities

Embeddigs of division algebras

The Double Centralizer step told us: $\exists t > 0$,

$$t[\operatorname{End}^{0}(A) \otimes_{Z} Z(\pi)] = t[\operatorname{End}^{0}(A_{\mathfrak{p}}) \otimes_{\mathbb{Q}(\pi)} Z(\pi)].$$
The Double Centralizer step told us: $\exists t > 0$,

$$t[\operatorname{End}^{0}(A) \otimes_{Z} Z(\pi)] = t[\operatorname{End}^{0}(A_{\mathfrak{p}}) \otimes_{\mathbb{Q}(\pi)} Z(\pi)].$$

The converse also holds.

Theorem

Let Z_Y number field, Y/Z_Y division algebra, F a subfield of Y, D/F be a division quaternion algebra.

The Double Centralizer step told us: $\exists t > 0$,

$$t[\operatorname{End}^{0}(A) \otimes_{Z} Z(\pi)] = t[\operatorname{End}^{0}(A_{\mathfrak{p}}) \otimes_{\mathbb{Q}(\pi)} Z(\pi)].$$

The converse also holds.

Theorem

Let Z_Y number field, Y/Z_Y division algebra, F a subfield of Y, D/F be a division quaternion algebra.

Let
$$\mathcal{Z} = F \cdot Z_Y \subset Y$$
, $d := \frac{\operatorname{ord}_{Z_Y}[Y]}{[\mathcal{Z}:Z_Y]} = \frac{\sqrt{\dim_{Z_Y}Y}}{[\mathcal{Z}:Z_Y]}$.

The Double Centralizer step told us: $\exists t > 0$,

$$t[\operatorname{End}^{0}(A) \otimes_{Z} Z(\pi)] = t[\operatorname{End}^{0}(A_{\mathfrak{p}}) \otimes_{\mathbb{Q}(\pi)} Z(\pi)].$$

The converse also holds.

Theorem

Let Z_Y number field, Y/Z_Y division algebra, F a subfield of Y, D/F be a division quaternion algebra.

Let
$$\mathcal{Z} = F \cdot Z_Y \subset Y$$
, $d := \frac{\operatorname{ord}_{Z_Y}[Y]}{[\mathcal{Z}:Z_Y]} = \frac{\sqrt{\dim_{Z_Y}Y}}{[\mathcal{Z}:Z_Y]}$.

There exists an embedding $\iota: D \to Y$ if and only if

The Double Centralizer step told us: $\exists t > 0$,

$$t[\operatorname{End}^{0}(A) \otimes_{Z} Z(\pi)] = t[\operatorname{End}^{0}(A_{\mathfrak{p}}) \otimes_{\mathbb{Q}(\pi)} Z(\pi)].$$

The converse also holds.

Theorem

Let Z_Y number field, Y/Z_Y division algebra, F a subfield of Y, D/F be a division quaternion algebra.

Let
$$\mathcal{Z} = F \cdot Z_Y \subset Y$$
, $d := \frac{\operatorname{ord}_{Z_Y}[Y]}{[\mathcal{Z}:Z_Y]} = \frac{\sqrt{\dim_{Z_Y} Y}}{[\mathcal{Z}:Z_Y]}$.

There exists an embedding $\iota: D \to Y$ if and only if

• *d* is divisible by 2 exactly once.

The Double Centralizer step told us: $\exists t > 0$,

$$t[\operatorname{End}^{0}(A) \otimes_{Z} Z(\pi)] = t[\operatorname{End}^{0}(A_{\mathfrak{p}}) \otimes_{\mathbb{Q}(\pi)} Z(\pi)].$$

The converse also holds.

Theorem

Let Z_Y number field, Y/Z_Y division algebra, F a subfield of Y, D/F be a division quaternion algebra.

Let
$$\mathcal{Z} = F \cdot Z_Y \subset Y$$
, $d := \frac{\operatorname{ord}_{Z_Y}[Y]}{[\mathcal{Z}:Z_Y]} = \frac{\sqrt{\dim_{Z_Y} Y}}{[\mathcal{Z}:Z_Y]}$.

There exists an embedding $\iota: D \to Y$ if and only if

• *d* is divisible by 2 exactly once.

$$\frac{d}{2}[D \otimes_F \mathcal{Z}] = \frac{d}{2}[Y \otimes_{Z_Y} \mathcal{Z}] \text{ in } Br(\mathcal{Z}).$$

The Double Centralizer step told us: $\exists t > 0$,

$$t[\operatorname{End}^{0}(A) \otimes_{Z} Z(\pi)] = t[\operatorname{End}^{0}(A_{\mathfrak{p}}) \otimes_{\mathbb{Q}(\pi)} Z(\pi)].$$

The converse also holds.

Theorem

Let Z_Y number field, Y/Z_Y division algebra, F a subfield of Y, D/F be a division quaternion algebra.

Let
$$\mathcal{Z} = F \cdot Z_Y \subset Y$$
, $d := \frac{\operatorname{ord}_{Z_Y}[Y]}{[\mathcal{Z}:Z_Y]} = \frac{\sqrt{\dim_{Z_Y} Y}}{[\mathcal{Z}:Z_Y]}$.

There exists an embedding $\iota: D \to Y$ if and only if

• *d* is divisible by 2 exactly once.

$$\frac{d}{2}[D \otimes_F \mathcal{Z}] = \frac{d}{2}[Y \otimes_{Z_Y} \mathcal{Z}] \text{ in } Br(\mathcal{Z}).$$

When the conditions hold, \mathcal{Z} does not split D or Y.

• Suppose we have an embedding of simple algebras $X \rightarrow Y$.

- Suppose we have an embedding of simple algebras $X \to Y$.
- If Y is division, Z = Z_X · Z_Y is a field, and X ⊗_{Z_X} Z → Y is an injection
 → can apply Double Centralizer Theorem.

- Suppose we have an embedding of simple algebras $X \to Y$.
- If Y is division, Z = Z_X · Z_Y is a field, and X ⊗_{Z_X} Z → Y is an injection
 → can apply Double Centralizer Theorem.
- In general, $Y \simeq \operatorname{Mat}_r(Y')$ with Y' division.

- Suppose we have an embedding of simple algebras $X \to Y$.
- If Y is division, Z = Z_X · Z_Y is a field, and X ⊗_{Z_X} Z → Y is an **injection** → can apply Double Centralizer Theorem.
- In general, $Y \simeq \operatorname{Mat}_r(Y')$ with Y' division.
- We have $X \otimes_{Z_X} \mathcal{Z} \to Y$, but

- Suppose we have an embedding of simple algebras $X \to Y$.
- If Y is division, Z = Z_X · Z_Y is a field, and X ⊗_{Z_X} Z → Y is an injection
 → can apply Double Centralizer Theorem.
- In general, $Y \simeq \operatorname{Mat}_r(Y')$ with Y' division.

• We have
$$X \otimes_{Z_X} \mathcal{Z} o Y$$
, but

- Suppose we have an embedding of simple algebras $X \to Y$.
- If Y is division, Z = Z_X · Z_Y is a field, and X ⊗_{Z_X} Z → Y is an injection
 → can apply Double Centralizer Theorem.
- In general, $Y \simeq \operatorname{Mat}_r(Y')$ with Y' division.
- We have $X \otimes_{Z_X} \mathcal{Z} o Y$, but

 - **2** $X \otimes_{Z_X} \mathcal{Z} \to Y$ might not be an injection (no DCT!)

- Suppose we have an embedding of simple algebras $X \to Y$.
- If Y is division, Z = Z_X · Z_Y is a field, and X ⊗_{Z_X} Z → Y is an injection → can apply Double Centralizer Theorem.
- In general, $Y \simeq \operatorname{Mat}_r(Y')$ with Y' division.
- We have $X \otimes_{Z_X} \mathcal{Z} \to Y$, but

 - **2** $X \otimes_{Z_X} \mathcal{Z} \to Y$ might not be an injection (no DCT!)

Example

- Suppose we have an embedding of simple algebras $X \to Y$.
- If Y is division, $Z = Z_X \cdot Z_Y$ is a field, and $X \otimes_{Z_X} Z \to Y$ is an **injection** \rightsquigarrow can apply Double Centralizer Theorem.
- In general, $Y \simeq \operatorname{Mat}_r(Y')$ with Y' division.
- We have $X \otimes_{Z_X} \mathcal{Z} \to Y$, but

 - $X \otimes_{Z_X} \mathcal{Z} \to Y$ might not be an injection (no DCT!)

Example

•
$$\sqrt{5} \mapsto \begin{pmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{5} \end{pmatrix}$$
, $\mathcal{Z} = \mathbb{Q}(\sqrt{5})$.

- Suppose we have an embedding of simple algebras $X \to Y$.
- If Y is division, Z = Z_X · Z_Y is a field, and X ⊗_{Z_X} Z → Y is an injection → can apply Double Centralizer Theorem.
- In general, $Y \simeq \operatorname{Mat}_r(Y')$ with Y' division.
- We have $X \otimes_{Z_X} \mathcal{Z} \to Y$, but

 - **2** $X \otimes_{Z_X} \mathcal{Z} \to Y$ might not be an injection (no DCT!)

Example

•
$$\sqrt{5} \mapsto \begin{pmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{5} \end{pmatrix}$$
, $\mathcal{Z} = \mathbb{Q}(\sqrt{5})$.
• $\sqrt{5} \mapsto \begin{pmatrix} 0 & 5 \\ 1 & 0 \end{pmatrix}$ and the compositum $\mathcal{Z} \simeq \mathbb{Q}(\sqrt{5}) \times \mathbb{Q}(\sqrt{5})$.

Definition

Let X/Z_X and Y/Z_Y be simple \mathbb{Q} -algebras. Let $\iota : X \to Y$ be an embedding. We say ι is **primitive** if the subalgebra \mathcal{Z} of Y generated by $\iota(Z_X)$ and Z_Y is a field.

Definition

Let X/Z_X and Y/Z_Y be simple \mathbb{Q} -algebras. Let $\iota : X \to Y$ be an embedding. We say ι is **primitive** if the subalgebra \mathcal{Z} of Y generated by $\iota(Z_X)$ and Z_Y is a field.

Example

•
$$\sqrt{5} \mapsto \begin{pmatrix} \sqrt{5} & 0 \\ 0 & \sqrt{5} \end{pmatrix}$$
 is primitive.
• $\sqrt{5} \mapsto \begin{pmatrix} 0 & 5 \\ 1 & 0 \end{pmatrix}$ is not primitive: $\begin{pmatrix} 0 & 5 \\ 1 & 0 \end{pmatrix} \sim \begin{pmatrix} \sqrt{5} & 0 \\ 0 & -\sqrt{5} \end{pmatrix}$
and the compositum \mathcal{Z} is $\mathbb{Q}(\sqrt{5}) \times \mathbb{Q}(\sqrt{5})$.

Why primitive embeddings?

Lemma

Let X/Z_X simple algebra, Y'/Z_Y division algebra, $\varphi: X \to Mat_r(Y')$ any embedding.

There exist primitive embeddings $\varphi_i : X \to \operatorname{Mat}_{r_i}(Y')$ with $\sum r_i = r$, such that φ factors (up to conjugation) through

$$\prod \varphi_i : X \to \prod_i \operatorname{Mat}_{r_i}(Y') \subset \operatorname{Mat}_r(Y').$$

Why primitive embeddings?

Lemma

Let X/Z_X simple algebra, Y'/Z_Y division algebra, $\varphi: X \to Mat_r(Y')$ any embedding.

There exist primitive embeddings $\varphi_i : X \to \operatorname{Mat}_{r_i}(Y')$ with $\sum r_i = r$, such that φ factors (up to conjugation) through

$$\prod \varphi_i : X \to \prod_i \mathsf{Mat}_{r_i}(Y') \subset \mathsf{Mat}_r(Y').$$

$$X \rightarrow \begin{pmatrix} * & * & 0 & 0 & 0 & 0 & 0 \\ * & * & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & * & * & 0 & 0 & 0 \\ 0 & 0 & 0 & * & * & * & 0 & 0 \\ 0 & 0 & 0 & 0 & * & * & * \\ 0 & 0 & 0 & 0 & * & * & * \end{pmatrix} \subset \mathsf{Mat}_7(Y')$$

Enric Florit (UB)

Let X/Z_X and Y/Z_Y be simple Q-algebras. There exists a primitive embedding $X \to Y$ if and only if

Let X/Z_X and Y/Z_Y be simple \mathbb{Q} -algebras. There exists a primitive embedding $X \to Y$ if and only if

• There exist embeddings $Z_X \to \overline{\mathbb{Q}}, Z_Y \to \overline{\mathbb{Q}}$ such that the compositum $\mathcal{Z} = Z_X Z_Y$ satisfies

$$[\mathcal{Z}: Z_Y] \sqrt{\dim_{Z_X} X} \mid \sqrt{\dim_{Z_Y} Y}.$$

Let X/Z_X and Y/Z_Y be simple Q-algebras. There exists a primitive embedding $X \to Y$ if and only if

• There exist embeddings $Z_X \to \overline{\mathbb{Q}}, Z_Y \to \overline{\mathbb{Q}}$ such that the compositum $\mathcal{Z} = Z_X Z_Y$ satisfies

$$[\mathcal{Z}: Z_Y] \sqrt{\dim_{Z_X} X} \mid \sqrt{\dim_{Z_Y} Y}.$$

• Letting
$$d = \frac{\sqrt{\dim_{Z_Y} Y}}{[\mathcal{Z}:Z_Y]\sqrt{\dim_{Z_X} X}}$$
, we have
 $d[X \otimes_{Z_X} \mathcal{Z}] = d[Y \otimes_{Z_Y} \mathcal{Z}]$ in Br(\mathcal{Z}).

*The equality of Brauer classes might be trivial!

Proposition

Let X/Z_X , Y/Z_Y be \mathbb{Q} -algebras. Suppose one of the following holds:

- Z_X/\mathbb{Q} is Galois.
- Z_Y/\mathbb{Q} is Galois.
- $[Z_X : \mathbb{Q}] \leq 4.$
- $[Z_Y : \mathbb{Q}] \leq 4.$

Then, there exists an embedding $\varphi : X \to Y$ if and only if there exists a **primitive** embedding $\psi : X \to Y$.

Problem B for abelian fourfolds

Let p prime, $q = p^r$, $B \sim (B')^r / \mathbb{F}_q$ be an isotypical abelian fourfold. Let F be a totally real field, D/F a quaternion algebra.

• Characterize the existence of an embedding $\iota: D \to \operatorname{End}^0(B)$.

Let p prime, $q = p^r$, $B \sim (B')^r / \mathbb{F}_q$ be an isotypical abelian fourfold. Let F be a totally real field, D/F a quaternion algebra.

• Characterize the existence of an embedding $\iota: D \to \text{End}^0(B)$.

2 If ι exists, determine splitting and *p*-rank of *B*.

• If we want $\iota: D \to \operatorname{End}^{0}(B)$, then $\operatorname{End}^{0}(B)$ is non-commutative, and $[\mathbb{Q}(\pi):\mathbb{Q}]$ is a proper divisor of $2 \dim B = 8$.

Let p prime, $q = p^r$, $B \sim (B')^r / \mathbb{F}_q$ be an isotypical abelian fourfold. Let F be a totally real field, D/F a quaternion algebra.

• Characterize the existence of an embedding $\iota: D \to \operatorname{End}^0(B)$.

- If we want $\iota : D \to \text{End}^{0}(B)$, then $\text{End}^{0}(B)$ is non-commutative, and $[\mathbb{Q}(\pi) : \mathbb{Q}]$ is a proper divisor of $2 \dim B = 8$.
- \implies $[\mathbb{Q}(\pi) : \mathbb{Q}] \leq 4.$

Let p prime, $q = p^r$, $B \sim (B')^r / \mathbb{F}_q$ be an isotypical abelian fourfold. Let F be a totally real field, D/F a quaternion algebra.

• Characterize the existence of an embedding $\iota: D \to \operatorname{End}^0(B)$.

- If we want $\iota : D \to \text{End}^{0}(B)$, then $\text{End}^{0}(B)$ is non-commutative, and $[\mathbb{Q}(\pi) : \mathbb{Q}]$ is a proper divisor of $2 \dim B = 8$.
- \implies $[\mathbb{Q}(\pi) : \mathbb{Q}] \leq 4.$
- There exists an embedding ι if and only if there exists a primitive embedding.

Let p prime, $q = p^r$, $B \sim (B')^r / \mathbb{F}_q$ be an isotypical abelian fourfold. Let F be a totally real field, D/F a quaternion algebra.

• Characterize the existence of an embedding $\iota: D \to \operatorname{End}^0(B)$.

- If we want $\iota : D \to \text{End}^{0}(B)$, then $\text{End}^{0}(B)$ is non-commutative, and $[\mathbb{Q}(\pi) : \mathbb{Q}]$ is a proper divisor of $2 \dim B = 8$.
- \implies $[\mathbb{Q}(\pi):\mathbb{Q}] \leq 4.$
- There exists an embedding ι if and only if there exists a primitive embedding.
- Can focus on characterizing primitive embeddings!

Conditions for $D \to \operatorname{End}^0(B)$.

Conditions for $D \to \operatorname{End}^0(B)$.

В	$\mathbb{Q}(\pi)$	$\iota(F)\cap \mathbb{Q}(\pi)$	<i>D</i> has a real split place?	Conditions
E ⁴	Q	Q	yes	[<i>F</i> : Q] 2
E ⁴	Q	Q	no	$[F:\mathbb{Q}] \mid 2,$ or $[F:\mathbb{Q}] = 4$ and Br. eq.
S^2	$\mathbb{Q}(\sqrt{p})$	Q	yes	$F = \mathbb{Q}$
S^2	$\mathbb{Q}(\sqrt{p})$	$\mathbb{Q}(\sqrt{p})$	yes	[<i>F</i> : ℚ] 2
<i>S</i> ²	$\mathbb{Q}(\sqrt{p})$	Q	no	$F = \mathbb{Q},$ or $[F : \mathbb{Q}] = 2$ and Br. eq.
<i>S</i> ²	$\mathbb{Q}(\sqrt{p})$	$\mathbb{Q}(\sqrt{p})$	no	$[F:\mathbb{Q}] \mid 2,$ or $[F:\mathbb{Q}] = 4$ and Br. eq.

- E: supersingular elliptic curve.
- S: supersingular abelian surface.

• Br. eq.:
$$[D \otimes_F F(\pi)] = [\operatorname{End}^0(B) \otimes_{\mathbb{Q}(\pi)} F(\pi)].$$

Proposition (Arai-Takai'23)

Suppose $\mathbb{Q}(\pi)$ is quartic CM. There is an embedding $\iota : D \to \text{End}^0(B)$ if and only if

- **(**) $\mathbb{Q}(\pi)$ contains an isomorphic copy of *F*, and
- 2 End⁰(B) $\simeq D \otimes_F \mathbb{Q}(\pi)$.

In particular, B splits if and only if $\mathbb{Q}(\pi)$ splits D.

F and $\mathbb{Q}(\pi)$ quadratic

Theorem

Suppose *F* is real quadratic and $\mathbb{Q}(\pi)$ is imaginary quadratic. There exists $\iota: D \to \operatorname{End}^0(B)$ if and only if:

• $B \sim E^4$, with $\operatorname{End}^0(E) = \mathbb{Q}(\pi)$, and $F(\pi)$ splits D.

F and $\mathbb{Q}(\pi)$ quadratic

Theorem

Suppose *F* is real quadratic and $\mathbb{Q}(\pi)$ is imaginary quadratic. There exists $\iota: D \to \operatorname{End}^0(B)$ if and only if:

9 $B \sim E^4$, with $\operatorname{End}^0(E) = \mathbb{Q}(\pi)$, and $F(\pi)$ splits D.

2 $B \sim S^2$, with S a supersingular \mathbb{F}_q -simple abelian surface with $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{-3})$, End⁰(S) the unique quaternion algebra over $\mathbb{Q}(\pi)$ ramified at the places above p, $[\mathbb{F}_q : \mathbb{F}_p]$ is even, and

$$[D \otimes_F F(\pi)] = [\operatorname{End}^0(S) \otimes_{\mathbb{Q}(\pi)} F(\pi)]$$
 in $\operatorname{Br}(F(\pi))$.

F and $\mathbb{Q}(\pi)$ quadratic

Theorem

Suppose *F* is real quadratic and $\mathbb{Q}(\pi)$ is imaginary quadratic. There exists $\iota: D \to \operatorname{End}^0(B)$ if and only if:

• $B \sim E^4$, with $\operatorname{End}^0(E) = \mathbb{Q}(\pi)$, and $F(\pi)$ splits D.

2 $B \sim S^2$, with S a supersingular \mathbb{F}_q -simple abelian surface with $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{-3})$, End⁰(S) the unique quaternion algebra over $\mathbb{Q}(\pi)$ ramified at the places above p, $[\mathbb{F}_q : \mathbb{F}_p]$ is even, and

$$[D \otimes_F F(\pi)] = [\operatorname{End}^0(S) \otimes_{\mathbb{Q}(\pi)} F(\pi)]$$
 in $\operatorname{Br}(F(\pi))$.

B is geometrically simple, has *p*-rank 0, and End⁰(B) is a degree-4 division algebra over Q(π), such that

$$[D \otimes_F F(\pi)] = [\operatorname{End}^0(B) \otimes_{\mathbb{Q}(\pi)} F(\pi)]$$
 in $\operatorname{Br}(F(\pi))$.

In particular, $[\mathbb{F}_q : \mathbb{F}_p]$ is a multiple of 4 and *B* is not supersingular. The prime *p* does not split in *F*, and *D* ramifies at *p*.

Enric Florit (UB)

Suppose $F = \mathbb{Q}$, $\mathbb{Q}(\pi)$ CM field. There is an embedding $\iota : D \to \text{End}^{0}(B)$ if and only if:

9 $B \sim E^4$, where *E* is an elliptic curve.
- **2** $B \sim S^2$, S simple surface, with either

- $B \sim E^4$, where E is an elliptic curve.
- **2** $B \sim S^2$, S simple surface, with either
 - $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{-3})$, $\operatorname{End}^0(S)$ is a quaternion algebra, $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \simeq \operatorname{End}^0(S)$, and $[\mathbb{F}_q : \mathbb{F}_p]$ is even.

- $B \sim E^4$, where E is an elliptic curve.
- **2** $B \sim S^2$, S simple surface, with either
 - $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{-3})$, $\operatorname{End}^0(S)$ is a quaternion algebra, $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \simeq \operatorname{End}^0(S)$, and $[\mathbb{F}_q : \mathbb{F}_p]$ is even.
 - So $End^{0}(S) = \mathbb{Q}(\pi)$ a quartic CM field that splits D. If in addition D ramifies at p, then S is ordinary or supersingular.

- $B \sim E^4$, where E is an elliptic curve.
- **2** $B \sim S^2$, S simple surface, with either
 - $\mathbb{Q}(\pi) = \mathbb{Q}(\sqrt{-1})$ or $\mathbb{Q}(\sqrt{-3})$, $\operatorname{End}^0(S)$ is a quaternion algebra, $D \otimes_{\mathbb{Q}} \mathbb{Q}(\pi) \simeq \operatorname{End}^0(S)$, and $[\mathbb{F}_q : \mathbb{F}_p]$ is even.
 - So $End^{0}(S) = \mathbb{Q}(\pi)$ a quartic CM field that splits D. If in addition D ramifies at p, then S is ordinary or supersingular.
- S is a supersingular simple fourfold, Q(π) is a quartic CM field, End⁰(B) ≃ D ⊗_Q Q(π), and D ramifies at p.

Epilogue: Problem A' for abelian fourfolds

Theorem (F.)

Let k number field, A/k simple abelian fourfold such that $\text{End}^{0}(A)$ is a quaternion algebra. Then, A splits modulo all but finitely many primes.

Problem A'

- Can we say anything more about the set of simple reductions?
- Is it ever nonempty?

Let k number field, A/k a simple abelian fourfold such that $\text{End}^{0}(A)$ is a quaternion algebra **over** \mathbb{Q} .

Let k number field, A/k a simple abelian fourfold such that $\text{End}^{0}(A)$ is a quaternion algebra **over** \mathbb{Q} . For every $\mathfrak{p} \in \Sigma_{A}$, $A_{\mathfrak{p}}$ is split or supersingular.

Let k number field, A/k a simple abelian fourfold such that $\operatorname{End}^{0}(A)$ is a quaternion algebra **over** \mathbb{Q} . For every $\mathfrak{p} \in \Sigma_{A}$, $A_{\mathfrak{p}}$ is split or supersingular. In particular, $A_{\mathfrak{p}}$ is always **geometrically split**.

Let k number field, A/k a simple abelian fourfold such that $\operatorname{End}^{0}(A)$ is a quaternion algebra **over** \mathbb{Q} . For every $\mathfrak{p} \in \Sigma_{A}$, $A_{\mathfrak{p}}$ is split or supersingular. In particular, $A_{\mathfrak{p}}$ is always **geometrically split**.

But:

• There exists an abelian fourfold A over $\mathbb{Q}(\sqrt{-1}, \sqrt{-3}, \sqrt{13})$,

Let k number field, A/k a simple abelian fourfold such that $\operatorname{End}^{0}(A)$ is a quaternion algebra **over** \mathbb{Q} . For every $\mathfrak{p} \in \Sigma_{A}$, $A_{\mathfrak{p}}$ is split or supersingular. In particular, $A_{\mathfrak{p}}$ is always **geometrically split**.

But:

There exists an abelian fourfold A over Q(√-1, √-3, √13),
with End⁰(A) a quaternion algebra over Q(√17),

Let k number field, A/k a simple abelian fourfold such that $\operatorname{End}^{0}(A)$ is a quaternion algebra **over** \mathbb{Q} . For every $\mathfrak{p} \in \Sigma_{A}$, $A_{\mathfrak{p}}$ is split or supersingular. In particular, $A_{\mathfrak{p}}$ is always **geometrically split**.

But:

- There exists an abelian fourfold A over $\mathbb{Q}(\sqrt{-1}, \sqrt{-3}, \sqrt{13})$,
- with $\operatorname{End}^0(A)$ a quaternion algebra over $\mathbb{Q}(\sqrt{17})$,
- which is **geometrically simple** modulo $\mathfrak{p} \mid 17$.

Quaternionic multiplication and abelian fourfolds

Enric Florit

Universitat de Barcelona

The SQIparty 2025