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Which quaternion algebras can act on a given abelian
variety?
E/Fq: only Dp,∞

If a quaternion algebra acts on an abelian variety,
what properties does it force on it?
E/Fq: E supersingular, E [p] = 0.

Enric Florit (UB) QM and fourfolds 1 / 25



A local-global problem

Problem A

k number field, A/k simple abelian variety, ΣA =primes of good red.

p ∈ ΣA ⇝ Ap := A mod p.

Say Ap splits if Ap ∼ A1 × A2; simple otherwise.

Suppose End0(A) := End(A)⊗Q is non-commutative.

Murty-Patankar Problem: characterize the set

S = {p ∈ ΣA : Ap is simple}

For p ∈ ΣA, there is a “reduction embedding”

End0(A) → End0(Ap).

We will relate the two algebras and study whether End0(Ap) is division or
contains zero-divisors.
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A classical theorem

Theorem (Morita, Yoshida, 70s)

Let A/k be a simple abelian surface with D = End0(A) indefinite
quaternion algebra.

If Ap is simple, then D ramifies at p.
⇝ S = {p ∈ ΣA : Ap is simple} is finite.

Proof. Let π be Frobenius on Ap. We reason by cases on Q(π).

Q(π) = Q =⇒ A ∼ E 2, supersingular.
Q(π) =imag. quadr., can show

D ⊗Q Q(π) ≃ End0(Ap).

If Ap simple, then End0(Ap) ramifies at p =⇒ D ramifies at p.
Q(π) = Q(

√
p) would also give

D ⊗Q Q(
√
p) ≃ End0(Ap).

But D is indefinite, while End0(Ap) is definite (Tate).

□
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A second problem

In fact, we have almost solved the following problem:

Problem B

Let p prime, q = pr , B/Fq be an abelian surface.
Let D/Q an indefinite quaternion algebra.

1 Characterize the existence of an embedding ι : D → End0(B).

2 If ι exists, determine splitting and p-rank of B.
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Classifying surfaces with QM

The proof of Morita–Yoshida gives the solution to Problem B for surfaces.

Theorem (Chia-Fu Yu)

Let D/Q indefinite division quaternion algebra, B/Fq abelian surface with
embedding D → End0(B). Then either

1 A ∼ E 2, with
1 End0(A) ≃ Mat2(Dp,∞), E supersingular, or
2 End0(A) ≃ Mat2(Q(π)), Q(π) splitting D.

2 A simple, supersingular, with
End0(A) ≃ D ⊗Q(π), Q(π) imaginary quadratic.
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Solving Problem A
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Theorem (F.)

Let k number field, A/k simple abelian variety such that End(A) is
non-commutative. Let ΣA ∋ p | p.

If Ap is simple, then End0(A) ramifies at a place over p.
⇝ S = {p ∈ ΣA : Ap simple} is finite.
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Proof

Theorem (F.)

If Ap is simple, then End0(A) ramifies at a place over p.

Let Z = Z (End0(A)), suppose Ap simple.
We have an embedding ι : End0(A) → End0(Ap).
The subalg. Z (π) ⊂ End0(Ap) generated by ι(Z ) and Q(π) is a field.
The embedding ι can be extended to

ι̃ : End0(A)⊗Z Z (π) → End0(Ap).

By the Double Centralizer Theorem, there is some t > 0 and a
nontrivial equality in Br(Z (π)):

t[End0(A)⊗Z Z (π)] = t[End0(Ap)⊗Q(π) Z (π)].

Can assume dimA ≥ 3, so Q(π) CM field
=⇒ End0(Ap) ramifies at p =⇒ End0(A) ramifies at p. □
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Problem A’

Theorem (F.)

Let k number field, A/k simple abelian variety such that End(A) is
non-commutative.
Then, A splits modulo all but finitely many primes.

Problem A’

Can we say anything more about the set of simple reductions?

Is it ever nonempty?
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Some technicalities
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Embeddigs of division algebras

The Double Centralizer step told us: ∃t > 0,

t[End0(A)⊗Z Z (π)] = t[End0(Ap)⊗Q(π) Z (π)].

The converse also holds.

Theorem

Let ZY number field, Y /ZY division algebra, F a subfield of Y , D/F be a
division quaternion algebra.

Let Z = F · ZY ⊂ Y , d :=
ordZY [Y ]

[Z:ZY ] =

√
dimZY

Y

[Z:ZY ] .

There exists an embedding ι : D → Y if and only if

1 d is divisible by 2 exactly once.

2 d
2 [D ⊗F Z] = d

2 [Y ⊗ZY
Z] in Br(Z).

When the conditions hold, Z does not split D or Y .
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Matrix algebras

Suppose we have an embedding of simple algebras X → Y .

If Y is division, Z = ZX · ZY is a field,
and X ⊗ZX

Z → Y is an injection
⇝ can apply Double Centralizer Theorem.

In general, Y ≃ Matr (Y
′) with Y ′ division.

We have X ⊗ZX
Z → Y , but

1 Z might not be a field.
2 X ⊗ZX

Z → Y might not be an injection (no DCT!)

Example

Consider the following two embeddings Q(
√
5) → Mat2(Q(

√
5)).

√
5 7→

(√
5 0

0
√
5

)
, Z = Q(

√
5).

√
5 7→

(
0 5
1 0

)
and the compositum Z ≃ Q(

√
5)×Q(

√
5).

Enric Florit (UB) QM and fourfolds 12 / 25



Matrix algebras

Suppose we have an embedding of simple algebras X → Y .

If Y is division, Z = ZX · ZY is a field,
and X ⊗ZX

Z → Y is an injection
⇝ can apply Double Centralizer Theorem.

In general, Y ≃ Matr (Y
′) with Y ′ division.

We have X ⊗ZX
Z → Y , but

1 Z might not be a field.
2 X ⊗ZX

Z → Y might not be an injection (no DCT!)

Example

Consider the following two embeddings Q(
√
5) → Mat2(Q(

√
5)).

√
5 7→

(√
5 0

0
√
5

)
, Z = Q(

√
5).

√
5 7→

(
0 5
1 0

)
and the compositum Z ≃ Q(

√
5)×Q(

√
5).

Enric Florit (UB) QM and fourfolds 12 / 25



Matrix algebras

Suppose we have an embedding of simple algebras X → Y .

If Y is division, Z = ZX · ZY is a field,
and X ⊗ZX

Z → Y is an injection
⇝ can apply Double Centralizer Theorem.

In general, Y ≃ Matr (Y
′) with Y ′ division.

We have X ⊗ZX
Z → Y , but

1 Z might not be a field.
2 X ⊗ZX

Z → Y might not be an injection (no DCT!)

Example

Consider the following two embeddings Q(
√
5) → Mat2(Q(

√
5)).

√
5 7→

(√
5 0

0
√
5

)
, Z = Q(

√
5).

√
5 7→

(
0 5
1 0

)
and the compositum Z ≃ Q(

√
5)×Q(

√
5).

Enric Florit (UB) QM and fourfolds 12 / 25



Matrix algebras

Suppose we have an embedding of simple algebras X → Y .

If Y is division, Z = ZX · ZY is a field,
and X ⊗ZX

Z → Y is an injection
⇝ can apply Double Centralizer Theorem.

In general, Y ≃ Matr (Y
′) with Y ′ division.

We have X ⊗ZX
Z → Y , but

1 Z might not be a field.
2 X ⊗ZX

Z → Y might not be an injection (no DCT!)

Example

Consider the following two embeddings Q(
√
5) → Mat2(Q(

√
5)).

√
5 7→

(√
5 0

0
√
5

)
, Z = Q(

√
5).

√
5 7→

(
0 5
1 0

)
and the compositum Z ≃ Q(

√
5)×Q(

√
5).

Enric Florit (UB) QM and fourfolds 12 / 25



Matrix algebras

Suppose we have an embedding of simple algebras X → Y .

If Y is division, Z = ZX · ZY is a field,
and X ⊗ZX

Z → Y is an injection
⇝ can apply Double Centralizer Theorem.

In general, Y ≃ Matr (Y
′) with Y ′ division.

We have X ⊗ZX
Z → Y , but

1 Z might not be a field.

2 X ⊗ZX
Z → Y might not be an injection (no DCT!)

Example

Consider the following two embeddings Q(
√
5) → Mat2(Q(

√
5)).

√
5 7→

(√
5 0

0
√
5

)
, Z = Q(

√
5).

√
5 7→

(
0 5
1 0

)
and the compositum Z ≃ Q(

√
5)×Q(

√
5).

Enric Florit (UB) QM and fourfolds 12 / 25



Matrix algebras

Suppose we have an embedding of simple algebras X → Y .

If Y is division, Z = ZX · ZY is a field,
and X ⊗ZX

Z → Y is an injection
⇝ can apply Double Centralizer Theorem.

In general, Y ≃ Matr (Y
′) with Y ′ division.

We have X ⊗ZX
Z → Y , but

1 Z might not be a field.
2 X ⊗ZX

Z → Y might not be an injection (no DCT!)

Example

Consider the following two embeddings Q(
√
5) → Mat2(Q(

√
5)).

√
5 7→

(√
5 0

0
√
5

)
, Z = Q(

√
5).

√
5 7→

(
0 5
1 0

)
and the compositum Z ≃ Q(

√
5)×Q(

√
5).

Enric Florit (UB) QM and fourfolds 12 / 25



Matrix algebras

Suppose we have an embedding of simple algebras X → Y .

If Y is division, Z = ZX · ZY is a field,
and X ⊗ZX

Z → Y is an injection
⇝ can apply Double Centralizer Theorem.

In general, Y ≃ Matr (Y
′) with Y ′ division.

We have X ⊗ZX
Z → Y , but

1 Z might not be a field.
2 X ⊗ZX

Z → Y might not be an injection (no DCT!)

Example

Consider the following two embeddings Q(
√
5) → Mat2(Q(

√
5)).

√
5 7→

(√
5 0

0
√
5

)
, Z = Q(

√
5).

√
5 7→

(
0 5
1 0

)
and the compositum Z ≃ Q(

√
5)×Q(

√
5).

Enric Florit (UB) QM and fourfolds 12 / 25



Matrix algebras

Suppose we have an embedding of simple algebras X → Y .

If Y is division, Z = ZX · ZY is a field,
and X ⊗ZX

Z → Y is an injection
⇝ can apply Double Centralizer Theorem.

In general, Y ≃ Matr (Y
′) with Y ′ division.

We have X ⊗ZX
Z → Y , but

1 Z might not be a field.
2 X ⊗ZX

Z → Y might not be an injection (no DCT!)

Example

Consider the following two embeddings Q(
√
5) → Mat2(Q(

√
5)).

√
5 7→

(√
5 0

0
√
5

)
, Z = Q(

√
5).

√
5 7→

(
0 5
1 0

)
and the compositum Z ≃ Q(

√
5)×Q(

√
5).

Enric Florit (UB) QM and fourfolds 12 / 25



Matrix algebras

Suppose we have an embedding of simple algebras X → Y .

If Y is division, Z = ZX · ZY is a field,
and X ⊗ZX

Z → Y is an injection
⇝ can apply Double Centralizer Theorem.

In general, Y ≃ Matr (Y
′) with Y ′ division.

We have X ⊗ZX
Z → Y , but

1 Z might not be a field.
2 X ⊗ZX

Z → Y might not be an injection (no DCT!)

Example

Consider the following two embeddings Q(
√
5) → Mat2(Q(

√
5)).

√
5 7→

(√
5 0

0
√
5

)
, Z = Q(

√
5).

√
5 7→

(
0 5
1 0

)
and the compositum Z ≃ Q(

√
5)×Q(

√
5).

Enric Florit (UB) QM and fourfolds 12 / 25



Primitive embeddings

Definition

Let X/ZX and Y /ZY be simple Q-algebras.
Let ι : X → Y be an embedding. We say ι is primitive if the subalgebra
Z of Y generated by ι(ZX ) and ZY is a field.

Example

Consider the following two embeddings Q(
√
5) → Mat2(Q(

√
5)).

√
5 7→

(√
5 0

0
√
5

)
is primitive.

√
5 7→

(
0 5
1 0

)
is not primitive:

(
0 5
1 0

)
∼

(√
5 0

0 −
√
5

)
and the compositum Z is Q(

√
5)×Q(

√
5).
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Why primitive embeddings?

Lemma

Let X/ZX simple algebra, Y ′/ZY division algebra, φ : X → Matr (Y
′) any

embedding.
There exist primitive embeddings φi : X → Matri (Y

′) with
∑

ri = r ,
such that φ factors (up to conjugation) through∏

φi : X →
∏
i

Matri (Y
′) ⊂ Matr (Y

′).

X →



∗ ∗ 0 0 0 0 0
∗ ∗ 0 0 0 0 0
0 0 ∗ ∗ 0 0 0
0 0 ∗ ∗ 0 0 0
0 0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗ ∗


⊂ Mat7(Y

′)
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Existence of primitive embeddings I

Theorem

Let X/ZX and Y /ZY be simple Q-algebras. There exists a primitive
embedding X → Y if and only if

1 There exist embeddings ZX → Q̄,ZY → Q̄ such that the compositum
Z = ZXZY satisfies

[Z : ZY ]
√

dimZX
X

∣∣ √dimZY
Y .

2 Letting d =

√
dimZY

Y

[Z:ZY ]
√

dimZX
X
, we have

d [X ⊗ZX
Z] = d [Y ⊗ZY

Z] in Br(Z).

*The equality of Brauer classes might be trivial!
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Existence of primitive embeddings II

Proposition

Let X/ZX , Y /ZY be Q-algebras. Suppose one of the following holds:

ZX/Q is Galois.

ZY /Q is Galois.

[ZX : Q] ≤ 4.

[ZY : Q] ≤ 4.

Then, there exists an embedding φ : X → Y if and only if there exists a
primitive embedding ψ : X → Y .
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Problem B for abelian fourfolds
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Problem B for abelian fourfolds

Problem B

Let p prime, q = pr , B ∼ (B ′)r/Fq be an isotypical abelian fourfold.
Let F be a totally real field, D/F a quaternion algebra.

1 Characterize the existence of an embedding ι : D → End0(B).

2 If ι exists, determine splitting and p-rank of B.

If we want ι : D → End0(B), then End0(B) is non-commutative, and
[Q(π) : Q] is a proper divisor of 2 dimB = 8.

=⇒ [Q(π) : Q] ≤ 4.

There exists an embedding ι if and only if there exists a primitive
embedding.

Can focus on characterizing primitive embeddings!
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Q(π) = Q or Q(
√
p)

Conditions for D → End0(B).

B Q(π) ι(F ) ∩Q(π)
D has a real
split place?

Conditions

E 4 Q Q yes [F : Q] | 2

E 4 Q Q no
[F : Q] | 2,

or [F : Q] = 4 and Br. eq.

S2 Q(
√
p) Q yes F = Q

S2 Q(
√
p) Q(

√
p) yes [F : Q] | 2

S2 Q(
√
p) Q no

F = Q,
or [F : Q] = 2 and Br. eq.

S2 Q(
√
p) Q(

√
p) no

[F : Q] | 2,
or [F : Q] = 4 and Br. eq.

E : supersingular elliptic curve.

S : supersingular abelian surface.

Br. eq.: [D ⊗F F (π)] = [End0(B)⊗Q(π) F (π)].
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Q(π) quartic CM field

Proposition (Arai-Takai’23)

Suppose Q(π) is quartic CM. There is an embedding ι : D → End0(B) if
and only if

1 Q(π) contains an isomorphic copy of F , and

2 End0(B) ≃ D ⊗F Q(π).

In particular, B splits if and only if Q(π) splits D.
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F and Q(π) quadratic

Theorem

Suppose F is real quadratic and Q(π) is imaginary quadratic. There exists
ι : D → End0(B) if and only if:

1 B ∼ E 4, with End0(E ) = Q(π), and F (π) splits D.

2 B ∼ S2, with S a supersingular Fq-simple abelian surface with
Q(π) = Q(

√
−1) or Q(

√
−3), End0(S) the unique quaternion algebra

over Q(π) ramified at the places above p, [Fq : Fp] is even, and

[D ⊗F F (π)] = [End0(S)⊗Q(π) F (π)] in Br(F (π)).

3 B is geometrically simple, has p-rank 0, and End0(B) is a degree-4
division algebra over Q(π), such that

[D ⊗F F (π)] = [End0(B)⊗Q(π) F (π)] in Br(F (π)).

In particular, [Fq : Fp] is a multiple of 4 and B is not supersingular.
The prime p does not split in F , and D ramifies at p.

Enric Florit (UB) QM and fourfolds 21 / 25



F and Q(π) quadratic

Theorem

Suppose F is real quadratic and Q(π) is imaginary quadratic. There exists
ι : D → End0(B) if and only if:

1 B ∼ E 4, with End0(E ) = Q(π), and F (π) splits D.

2 B ∼ S2, with S a supersingular Fq-simple abelian surface with
Q(π) = Q(

√
−1) or Q(

√
−3), End0(S) the unique quaternion algebra

over Q(π) ramified at the places above p, [Fq : Fp] is even, and

[D ⊗F F (π)] = [End0(S)⊗Q(π) F (π)] in Br(F (π)).

3 B is geometrically simple, has p-rank 0, and End0(B) is a degree-4
division algebra over Q(π), such that

[D ⊗F F (π)] = [End0(B)⊗Q(π) F (π)] in Br(F (π)).

In particular, [Fq : Fp] is a multiple of 4 and B is not supersingular.
The prime p does not split in F , and D ramifies at p.

Enric Florit (UB) QM and fourfolds 21 / 25



F and Q(π) quadratic

Theorem

Suppose F is real quadratic and Q(π) is imaginary quadratic. There exists
ι : D → End0(B) if and only if:

1 B ∼ E 4, with End0(E ) = Q(π), and F (π) splits D.

2 B ∼ S2, with S a supersingular Fq-simple abelian surface with
Q(π) = Q(

√
−1) or Q(

√
−3), End0(S) the unique quaternion algebra

over Q(π) ramified at the places above p, [Fq : Fp] is even, and

[D ⊗F F (π)] = [End0(S)⊗Q(π) F (π)] in Br(F (π)).

3 B is geometrically simple, has p-rank 0, and End0(B) is a degree-4
division algebra over Q(π), such that

[D ⊗F F (π)] = [End0(B)⊗Q(π) F (π)] in Br(F (π)).

In particular, [Fq : Fp] is a multiple of 4 and B is not supersingular.
The prime p does not split in F , and D ramifies at p.
Enric Florit (UB) QM and fourfolds 21 / 25



F = Q

Theorem

Suppose F = Q, Q(π) CM field. There is an embedding ι : D → End0(B)
if and only if:

1 B ∼ E 4, where E is an elliptic curve.

2 B ∼ S2, S simple surface, with either

a. Q(π) = Q(
√
−1) or Q(

√
−3), End0(S) is a quaternion algebra,

D ⊗Q Q(π) ≃ End0(S), and [Fq : Fp] is even.
b. End0(S) = Q(π) a quartic CM field that splits D. If in addition D

ramifies at p, then S is ordinary or supersingular.

3 B is a supersingular simple fourfold, Q(π) is a quartic CM field,
End0(B) ≃ D ⊗Q Q(π), and D ramifies at p.
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Suppose F = Q, Q(π) CM field. There is an embedding ι : D → End0(B)
if and only if:

1 B ∼ E 4, where E is an elliptic curve.
2 B ∼ S2, S simple surface, with either

a. Q(π) = Q(
√
−1) or Q(

√
−3), End0(S) is a quaternion algebra,

D ⊗Q Q(π) ≃ End0(S), and [Fq : Fp] is even.
b. End0(S) = Q(π) a quartic CM field that splits D. If in addition D

ramifies at p, then S is ordinary or supersingular.

3 B is a supersingular simple fourfold, Q(π) is a quartic CM field,
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Epilogue: Problem A’ for abelian fourfolds
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Epilogue: Problem A’ for abelian surfaces

Theorem (F.)

Let k number field, A/k simple abelian fourfold such that End0(A) is a
quaternion algebra.
Then, A splits modulo all but finitely many primes.

Problem A’

Can we say anything more about the set of simple reductions?

Is it ever nonempty?
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Epilogue: Problem A’ for abelian surfaces

Theorem

Let k number field, A/k a simple abelian fourfold such that End0(A) is a
quaternion algebra over Q.

For every p ∈ ΣA, Ap is split or supersingular.
In particular, Ap is always geometrically split.

But:

There exists an abelian fourfold A over Q(
√
−1,

√
−3,

√
13),

with End0(A) a quaternion algebra over Q(
√
17),

which is geometrically simple modulo p | 17.
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