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▪ Few words on open problems and DKG
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▪ Effective, i.e. we can efficiently: 

▪ compute, sample & canonically represent elements in G

▪ compute the action of all the elements of G

▪ Cryptographic: 

▪ Vectorization: given  it is hard to find g s.t. x, y g ⋆ x = y

▪ Parallelisation: given  and  it is hard to say if x, y = g ⋆ x, z = h ⋆ x w w = (gh) ⋆ x
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5

▪ Isomorphism problems from Tensors/Coding Theory (1)+ > Non-Abelian

▪ Class Group acting on Oriented Supersingular Elliptic Curves:

▪ CSI-FiSh (2) > Cyclic > We can work with ℤ/#Gℤ
▪ PEGASIS (3) > Abelian

G × X → X
(g, x) ↦ g ⋆ xWhich kind of?

(1)Barenghi A, Biasse JF, Persichetti E, Santini P. LESS-FM: fine-tuning signatures from the code equivalence problem. 
(2)Beullens W, Kleinjung T, Vercauteren F. CSI-FiSh: efficient isogeny based signatures through class group computations.
(3)Dartois P, Eriksen JK, Fouotsa TB, Le Merdy AH, Invernizzi R, Robert D, Rueger R, Vercauteren F, Wesolowski B. PEGASIS: Practical 

Effective Class Group Action using 4-Dimensional Isogenies.
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Signatures and Threshold 
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-Repeat  times; λ
-With Fiat-
Shamir transform 
you get a 
signature;

-Boneh et.al. 
(2): you need to 
do that at least 
 group actions.λ

(1) De Feo L, Galbraith SD. SeaSign: compact isogeny signatures from class group actions
(2) Boneh D, Guan J, Zhandry M. A lower bound on the length of signatures based on group actions and 

generic isogenies.
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▪ Add a ZKPoK for every action performed in commitment generation;

▪ Con: Very inefficient (memo: Boneh et.al. result); 

▪ Pro: Simple and imply adaptive security.

▪ Solution from (2):

▪ use secure randomness + verify all intermediate signatures

▪ Pro: Much more efficient;

▪ Con: Requires to know all intermediate public keys.

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce 
an actively secure distributed signing protocol.

(2) Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: 
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Cozzo D, Giunta E. Round-robin is optimal: lower bounds for group action based protocols.
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linear combination of their shares , then 

L
s = λS,1s1 + ⋯ + λS,TsT

y = [λS,1s1]⋯[λS,TsT] x

▪ Problem 1: requires  to be a ring with division, but  is composite,G #G

▪ Remark: the denominator abs is bounded by  N

▪ Solution: modify the generator so that all prime factors of ;N ≤ #G
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‘Vandermonde’ Secret Sharing 
▪ More complicated, but efficient

( N
T − 1) O (NTlog N)
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▪ Option 3 [OPEN]: can we have DKG for the Vandermonde Sharing?
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