
Giacomo Borin
2025.04.30 - SQIparty - Lleida SPAIN

Threshold signatures
from different group actions

2

2

▪ Introduction of different group actions

2

▪ Introduction of different group actions

▪ N-out-of-N case

2

▪ Introduction of different group actions

▪ N-out-of-N case

▪ Active security

2

▪ Introduction of different group actions

▪ N-out-of-N case

▪ Active security

▪ T-out-of-N case

2

▪ Introduction of different group actions

▪ N-out-of-N case

▪ Active security

▪ T-out-of-N case

▪ Few words on open problems and DKG

An (T,N)-threshold digital signature scheme is a protocol where any
subset of at least T out of N key owners can sign an agreed message,
but not one of less than T.

(Threshold) Signatures

3

An (T,N)-threshold digital signature scheme is a protocol where any
subset of at least T out of N key owners can sign an agreed message,
but not one of less than T.

(Threshold) Signatures

3

An (T,N)-threshold digital signature scheme is a protocol where any
subset of at least T out of N key owners can sign an agreed message,
but not one of less than T.

(Threshold) Signatures

3

An (T,N)-threshold digital signature scheme is a protocol where any
subset of at least T out of N key owners can sign an agreed message,
but not one of less than T.

(Threshold) Signatures

3

An (T,N)-threshold digital signature scheme is a protocol where any
subset of at least T out of N key owners can sign an agreed message,
but not one of less than T.

(Threshold) Signatures

3

N = 3

An (T,N)-threshold digital signature scheme is a protocol where any
subset of at least T out of N key owners can sign an agreed message,
but not one of less than T.

(Threshold) Signatures

3

N = 3

T = 2

An (T,N)-threshold digital signature scheme is a protocol where any
subset of at least T out of N key owners can sign an agreed message,
but not one of less than T.

(Threshold) Signatures

3

N = 3

T = 2

An (T,N)-threshold digital signature scheme is a protocol where any
subset of at least T out of N key owners can sign an agreed message,
but not one of less than T.

(Threshold) Signatures

3

N = 3

T = 2

An (T,N)-threshold digital signature scheme is a protocol where any
subset of at least T out of N key owners can sign an agreed message,
but not one of less than T.

(Threshold) Signatures

3

N = 3

T = 2

Cryptographic Group Actions
- Definitions

4

Cryptographic Group Actions
- Definitions

4

G × X → X
(g, x) ↦ g ⋆ x

Cryptographic Group Actions
- Definitions

4

G × X → X
(g, x) ↦ g ⋆ xNeeds to be a

group

Cryptographic Group Actions
- Definitions

4

G × X → X
(g, x) ↦ g ⋆ x

Composable:
g1 ⋆ (g2 ⋆ x) = (g1g2) ⋆ x

Needs to be a
group

Cryptographic Group Actions
- Definitions

4

▪ Effective, i.e. we can efficiently:

G × X → X
(g, x) ↦ g ⋆ x

Composable:
g1 ⋆ (g2 ⋆ x) = (g1g2) ⋆ x

Needs to be a
group

Cryptographic Group Actions
- Definitions

4

▪ Effective, i.e. we can efficiently:

▪ compute, sample & canonically represent elements in G

G × X → X
(g, x) ↦ g ⋆ x

Composable:
g1 ⋆ (g2 ⋆ x) = (g1g2) ⋆ x

Needs to be a
group

Cryptographic Group Actions
- Definitions

4

▪ Effective, i.e. we can efficiently:

▪ compute, sample & canonically represent elements in G

▪ compute the action of all the elements of G

G × X → X
(g, x) ↦ g ⋆ x

Composable:
g1 ⋆ (g2 ⋆ x) = (g1g2) ⋆ x

Needs to be a
group

Cryptographic Group Actions
- Definitions

4

▪ Effective, i.e. we can efficiently:

▪ compute, sample & canonically represent elements in G

▪ compute the action of all the elements of G

▪ Cryptographic:

G × X → X
(g, x) ↦ g ⋆ x

Composable:
g1 ⋆ (g2 ⋆ x) = (g1g2) ⋆ x

Needs to be a
group

Cryptographic Group Actions
- Definitions

4

▪ Effective, i.e. we can efficiently:

▪ compute, sample & canonically represent elements in G

▪ compute the action of all the elements of G

▪ Cryptographic:

▪ Vectorization: given it is hard to find g s.t. x, y g ⋆ x = y

G × X → X
(g, x) ↦ g ⋆ x

Composable:
g1 ⋆ (g2 ⋆ x) = (g1g2) ⋆ x

Needs to be a
group

Cryptographic Group Actions
- Definitions

4

▪ Effective, i.e. we can efficiently:

▪ compute, sample & canonically represent elements in G

▪ compute the action of all the elements of G

▪ Cryptographic:

▪ Vectorization: given it is hard to find g s.t. x, y g ⋆ x = y

▪ Parallelisation: given and it is hard to say if x, y = g ⋆ x, z = h ⋆ x w w = (gh) ⋆ x

G × X → X
(g, x) ↦ g ⋆ x

Composable:
g1 ⋆ (g2 ⋆ x) = (g1g2) ⋆ x

Needs to be a
group

Cryptographic Group Actions
- Instantiations

5

G × X → X
(g, x) ↦ g ⋆ x

Cryptographic Group Actions
- Instantiations

5

G × X → X
(g, x) ↦ g ⋆ xWhich kind of?

Cryptographic Group Actions
- Instantiations

5

▪ Isomorphism problems from Tensors/Coding Theory (1)+ > Non-Abelian

G × X → X
(g, x) ↦ g ⋆ xWhich kind of?

(1)Barenghi A, Biasse JF, Persichetti E, Santini P. LESS-FM: fine-tuning signatures from the code equivalence problem.

Cryptographic Group Actions
- Instantiations

5

▪ Isomorphism problems from Tensors/Coding Theory (1)+ > Non-Abelian

▪ Class Group acting on Oriented Supersingular Elliptic Curves:

G × X → X
(g, x) ↦ g ⋆ xWhich kind of?

(1)Barenghi A, Biasse JF, Persichetti E, Santini P. LESS-FM: fine-tuning signatures from the code equivalence problem.

Cryptographic Group Actions
- Instantiations

5

▪ Isomorphism problems from Tensors/Coding Theory (1)+ > Non-Abelian

▪ Class Group acting on Oriented Supersingular Elliptic Curves:

▪ CSI-FiSh (2) > Cyclic > We can work with ℤ/#Gℤ

G × X → X
(g, x) ↦ g ⋆ xWhich kind of?

(1)Barenghi A, Biasse JF, Persichetti E, Santini P. LESS-FM: fine-tuning signatures from the code equivalence problem.
(2)Beullens W, Kleinjung T, Vercauteren F. CSI-FiSh: efficient isogeny based signatures through class group computations.

Cryptographic Group Actions
- Instantiations

5

▪ Isomorphism problems from Tensors/Coding Theory (1)+ > Non-Abelian

▪ Class Group acting on Oriented Supersingular Elliptic Curves:

▪ CSI-FiSh (2) > Cyclic > We can work with ℤ/#Gℤ
▪ PEGASIS (3) > Abelian

G × X → X
(g, x) ↦ g ⋆ xWhich kind of?

(1)Barenghi A, Biasse JF, Persichetti E, Santini P. LESS-FM: fine-tuning signatures from the code equivalence problem.
(2)Beullens W, Kleinjung T, Vercauteren F. CSI-FiSh: efficient isogeny based signatures through class group computations.
(3)Dartois P, Eriksen JK, Fouotsa TB, Le Merdy AH, Invernizzi R, Robert D, Rueger R, Vercauteren F, Wesolowski B. PEGASIS: Practical

Effective Class Group Action using 4-Dimensional Isogenies.

6

Signatures and Threshold
Signatures

6

Signatures and Threshold
Signatures

 fixed
element
x ∈ X

6

Signatures and Threshold
Signatures

secret key
g ∈ G
secret key
g ∈ G

 fixed
element
x ∈ X

6

Signatures and Threshold
Signatures

secret key
g ∈ G
secret key
g ∈ G

 fixed
element
x ∈ X

public key
y ∈ X

6

Signatures and Threshold
Signatures

secret key
g ∈ G
secret key
g ∈ G

 fixed
element
x ∈ X

public key
y ∈ X

6

Signatures and Threshold
Signatures

secret key
g ∈ G
secret key
g ∈ G

 fixed
element
x ∈ X

public key
y ∈ X

commitment
z ∈ X

6

Signatures and Threshold
Signatures

secret key
g ∈ G
secret key
g ∈ G

 fixed
element
x ∈ X

public key
y ∈ X

commitment
z ∈ Xchallenge

 c ∈ {0,1}

6

Signatures and Threshold
Signatures

secret key
g ∈ G
secret key
g ∈ G

commitment secret
h ∈ G

 fixed
element
x ∈ X

public key
y ∈ X

commitment
z ∈ Xchallenge

 c ∈ {0,1}

6

Signatures and Threshold
Signatures

secret key
g ∈ G
secret key
g ∈ G

commitment secret
h ∈ G

response
hg−1 ∈ G

 fixed
element
x ∈ X

public key
y ∈ X

commitment
z ∈ Xchallenge

 c ∈ {0,1}

6

Signatures and Threshold
Signatures

-Repeat times; λ

secret key
g ∈ G
secret key
g ∈ G

commitment secret
h ∈ G

response
hg−1 ∈ G

 fixed
element
x ∈ X

public key
y ∈ X

commitment
z ∈ Xchallenge

 c ∈ {0,1}

6

Signatures and Threshold
Signatures

-Repeat times; λ
-With Fiat-
Shamir transform
you get a
signature;

(1) De Feo L, Galbraith SD. SeaSign: compact isogeny signatures from class group actions

secret key
g ∈ G
secret key
g ∈ G

commitment secret
h ∈ G

response
hg−1 ∈ G

 fixed
element
x ∈ X

public key
y ∈ X

commitment
z ∈ Xchallenge

 c ∈ {0,1}

6

Signatures and Threshold
Signatures

-Repeat times; λ
-With Fiat-
Shamir transform
you get a
signature;

-Boneh et.al.
(2): you need to
do that at least
 group actions.λ

(1) De Feo L, Galbraith SD. SeaSign: compact isogeny signatures from class group actions
(2) Boneh D, Guan J, Zhandry M. A lower bound on the length of signatures based on group actions and

generic isogenies.

secret key
g ∈ G
secret key
g ∈ G

commitment secret
h ∈ G

response
hg−1 ∈ G

 fixed
element
x ∈ X

public key
y ∈ X

commitment
z ∈ Xchallenge

 c ∈ {0,1}

7

Core intuition:
N-out-of-N case

7

Core intuition:
N-out-of-N case

 fixed
element

x ∈ X

7

Core intuition:
N-out-of-N case

 fixed
element

x ∈ X A

g1

7

Core intuition:
N-out-of-N case

 fixed
element

x ∈ X A

g1

B

g2

7

Core intuition:
N-out-of-N case

 fixed
element

x ∈ X A

g1

B

g2

C

g3

7

Core intuition:
N-out-of-N case

shared secret key

g = gN ⋯ g2 ⋅ g1

 fixed
element

x ∈ X A

g1

B

g2

C

g3

7

Core intuition:
N-out-of-N case

shared secret key

g = gN ⋯ g2 ⋅ g1

public key

y ∈ X

 fixed
element

x ∈ X A

g1

B

g2

C

g3

7

Core intuition:
N-out-of-N case

shared secret key

g = gN ⋯ g2 ⋅ g1

public key

y ∈ X

 fixed
element

x ∈ X A

g1

B

g2

C

g3

7

Core intuition:
N-out-of-N case

- the
intermediate pks
are in relation
given by:

shared secret key

g = gN ⋯ g2 ⋅ g1

public key

y ∈ X

 fixed
element

x ∈ X A

g1

B

g2

C

g3

7

Core intuition:
N-out-of-N case

- the
intermediate pks
are in relation
given by:
yi+1 = gi+1 ⋆ yi

shared secret key

g = gN ⋯ g2 ⋅ g1

public key

y ∈ X

 fixed
element

x ∈ X A

g1

B

g2

C

g3

7

Core intuition:
N-out-of-N case

- the
intermediate pks
are in relation
given by:
yi+1 = gi+1 ⋆ yi

shared secret key

g = gN ⋯ g2 ⋅ g1

public key

y ∈ X

 fixed
element

x ∈ X A

g1

B

g2

C

g3

h1

7

Core intuition:
N-out-of-N case

- the
intermediate pks
are in relation
given by:
yi+1 = gi+1 ⋆ yi

shared secret key

g = gN ⋯ g2 ⋅ g1

public key

y ∈ X

 fixed
element

x ∈ X A

g1

B

g2

C

g3

h1

h2

7

Core intuition:
N-out-of-N case

- the
intermediate pks
are in relation
given by:
yi+1 = gi+1 ⋆ yi

shared secret key

g = gN ⋯ g2 ⋅ g1

public key

y ∈ X

 fixed
element

x ∈ X A

g1

B

g2

C

g3

h1

h2

commitment

z ∈ X
h3

7

Core intuition:
N-out-of-N case

- the
intermediate pks
are in relation
given by:
yi+1 = gi+1 ⋆ yi

shared secret key

g = gN ⋯ g2 ⋅ g1

public key

y ∈ X

shared commitment

secret

h = hN ⋯ h2 ⋅ h1

 fixed
element

x ∈ X A

g1

B

g2

C

g3

h1

h2

commitment

z ∈ X
h3

7

Core intuition:
N-out-of-N case

- the
intermediate pks
are in relation
given by:
yi+1 = gi+1 ⋆ yi

shared secret key

g = gN ⋯ g2 ⋅ g1

public key

y ∈ X

shared commitment

secret

h = hN ⋯ h2 ⋅ h1

 fixed
element

x ∈ X

challenge
 c ∈ {0,1}

A

g1

B

g2

C

g3

h1

h2

commitment

z ∈ X
h3

7

Core intuition:
N-out-of-N case

- the
intermediate pks
are in relation
given by:
yi+1 = gi+1 ⋆ yi

shared secret key

g = gN ⋯ g2 ⋅ g1

public key

y ∈ X

shared commitment

secret

h = hN ⋯ h2 ⋅ h1

 fixed
element

x ∈ X

challenge
 c ∈ {0,1}

A

g1

B

g2

C

g3

h1

h2

commitment

z ∈ X
h3

7

Core intuition:
N-out-of-N case

- the
intermediate pks
are in relation
given by:
yi+1 = gi+1 ⋆ yi

shared secret key

g = gN ⋯ g2 ⋅ g1

public key

y ∈ X

shared commitment

secret

h = hN ⋯ h2 ⋅ h1

 fixed
element

x ∈ X

challenge
 c ∈ {0,1}

A

g1

B

g2

C

g3

h1

h2

commitment

z ∈ X
h3

7

Core intuition:
N-out-of-N case

- the
intermediate pks
are in relation
given by:
yi+1 = gi+1 ⋆ yi

shared secret key

g = gN ⋯ g2 ⋅ g1

public key

y ∈ X

shared commitment

secret

h = hN ⋯ h2 ⋅ h1

 fixed
element

x ∈ X

challenge
 c ∈ {0,1}

A

g1

B

g2

C

g3

h1

h2

commitment

z ∈ X
h3

7

Core intuition:
N-out-of-N case

- the
intermediate pks
are in relation
given by:
yi+1 = gi+1 ⋆ yi

- in the abelian
case we can
compress the
response phase
to one round

shared secret key

g = gN ⋯ g2 ⋅ g1

public key

y ∈ X

shared commitment

secret

h = hN ⋯ h2 ⋅ h1

 fixed
element

x ∈ X

challenge
 c ∈ {0,1}

A

g1

B

g2

C

g3

h1

h2

commitment

z ∈ X
h3

7

Core intuition:
N-out-of-N case

- the
intermediate pks
are in relation
given by:
yi+1 = gi+1 ⋆ yi

- in the abelian
case we can
compress the
response phase
to one round

- the hard part
is the sharing
of the secret,
not the
commitment

shared secret key

g = gN ⋯ g2 ⋅ g1

public key

y ∈ X

shared commitment

secret

h = hN ⋯ h2 ⋅ h1

 fixed
element

x ∈ X

challenge
 c ∈ {0,1}

A

g1

B

g2

C

g3

h1

h2

commitment

z ∈ X
h3

How to make this
secure against
active attackers?

8

How to make this
secure against
active attackers?

8

▪ In an active scenario the last user can always perform a basic version
of the ROS attack;

How to make this
secure against
active attackers?

8

▪ In an active scenario the last user can always perform a basic version
of the ROS attack;

▪ Solution from (1):

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

How to make this
secure against
active attackers?

8

▪ In an active scenario the last user can always perform a basic version
of the ROS attack;

▪ Solution from (1):

▪ Add a ZKPoK for every action performed in commitment generation;

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

How to make this
secure against
active attackers?

8

▪ In an active scenario the last user can always perform a basic version
of the ROS attack;

▪ Solution from (1):

▪ Add a ZKPoK for every action performed in commitment generation;

▪ Con: Very inefficient (memo: Boneh et.al. result);

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

How to make this
secure against
active attackers?

8

▪ In an active scenario the last user can always perform a basic version
of the ROS attack;

▪ Solution from (1):

▪ Add a ZKPoK for every action performed in commitment generation;

▪ Con: Very inefficient (memo: Boneh et.al. result);

▪ Pro: Simple and imply adaptive security.

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

How to make this
secure against
active attackers?

8

▪ In an active scenario the last user can always perform a basic version
of the ROS attack;

▪ Solution from (1):

▪ Add a ZKPoK for every action performed in commitment generation;

▪ Con: Very inefficient (memo: Boneh et.al. result);

▪ Pro: Simple and imply adaptive security.

▪ Solution from (2):

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

(2) Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass:
Threshold group action signature schemes.

How to make this
secure against
active attackers?

8

▪ In an active scenario the last user can always perform a basic version
of the ROS attack;

▪ Solution from (1):

▪ Add a ZKPoK for every action performed in commitment generation;

▪ Con: Very inefficient (memo: Boneh et.al. result);

▪ Pro: Simple and imply adaptive security.

▪ Solution from (2):

▪ use secure randomness + verify all intermediate signatures

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

(2) Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass:
Threshold group action signature schemes.

How to make this
secure against
active attackers?

8

▪ In an active scenario the last user can always perform a basic version
of the ROS attack;

▪ Solution from (1):

▪ Add a ZKPoK for every action performed in commitment generation;

▪ Con: Very inefficient (memo: Boneh et.al. result);

▪ Pro: Simple and imply adaptive security.

▪ Solution from (2):

▪ use secure randomness + verify all intermediate signatures

▪ Pro: Much more efficient;

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

(2) Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass:
Threshold group action signature schemes.

How to make this
secure against
active attackers?

8

▪ In an active scenario the last user can always perform a basic version
of the ROS attack;

▪ Solution from (1):

▪ Add a ZKPoK for every action performed in commitment generation;

▪ Con: Very inefficient (memo: Boneh et.al. result);

▪ Pro: Simple and imply adaptive security.

▪ Solution from (2):

▪ use secure randomness + verify all intermediate signatures

▪ Pro: Much more efficient;

▪ Con: Requires to know all intermediate public keys.

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

(2) Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass:
Threshold group action signature schemes.

9 Cozzo D, Giunta E. Round-robin is optimal: lower bounds for group action based protocols.

9 Cozzo D, Giunta E. Round-robin is optimal: lower bounds for group action based protocols.

9

Rounds

Complexity

Share size

Cozzo D, Giunta E. Round-robin is optimal: lower bounds for group action based protocols.

9

Rounds

Complexity

Share size

Passive,
Non-Abelian

N + N

O(N λ)

O(λ)

Cozzo D, Giunta E. Round-robin is optimal: lower bounds for group action based protocols.

9

Rounds

Complexity

Share size

Passive,
Non-Abelian

N + N

O(N λ)

O(λ)

Passive,
Abelian

N + 1

O(N λ)

O(λ)

Cozzo D, Giunta E. Round-robin is optimal: lower bounds for group action based protocols.

9

Rounds

Complexity

Share size

Passive,
Non-Abelian

N + N

O(N λ)

O(λ)

Passive,
Abelian

N + 1

O(N λ)

O(λ)

Active, with
ZKPs

N + 1 + 1

O(N λ²)

O(λ)

Cozzo D, Giunta E. Round-robin is optimal: lower bounds for group action based protocols.

9

Rounds

Complexity

Share size

Passive,
Non-Abelian

N + N

O(N λ)

O(λ)

Passive,
Abelian

N + 1

O(N λ)

O(λ)

Active, with
ZKPs

N + 1 + 1

O(N λ²)

O(λ)

Active, with
Secure

Randomness

N + N + 1

O(N λ)

O(N λ)

Cozzo D, Giunta E. Round-robin is optimal: lower bounds for group action based protocols.

How to make this
for T-out-of-N ?
Cyclic Case

10

De Feo L, Meyer M. Threshold schemes from isogeny assumptions

How to make this
for T-out-of-N ?
Cyclic Case

10

Shamir Secret Sharing

De Feo L, Meyer M. Threshold schemes from isogeny assumptions

How to make this
for T-out-of-N ?
Cyclic Case

10

Shamir Secret Sharing

▪ Idea: each authorised subset of parties can write the secret as a
linear combination of their shares , then

L
s = λS,1s1 + ⋯ + λS,TsT

y = [λS,1s1]⋯[λS,TsT] x

De Feo L, Meyer M. Threshold schemes from isogeny assumptions

How to make this
for T-out-of-N ?
Cyclic Case

10

Shamir Secret Sharing

▪ Idea: each authorised subset of parties can write the secret as a
linear combination of their shares , then

L
s = λS,1s1 + ⋯ + λS,TsT

y = [λS,1s1]⋯[λS,TsT] x

▪ Problem 1: requires to be a ring with division, but is composite,G #G

De Feo L, Meyer M. Threshold schemes from isogeny assumptions

How to make this
for T-out-of-N ?
Cyclic Case

10

Shamir Secret Sharing

▪ Idea: each authorised subset of parties can write the secret as a
linear combination of their shares , then

L
s = λS,1s1 + ⋯ + λS,TsT

y = [λS,1s1]⋯[λS,TsT] x

▪ Problem 1: requires to be a ring with division, but is composite,G #G

▪ Remark: the denominator abs is bounded by N

De Feo L, Meyer M. Threshold schemes from isogeny assumptions

How to make this
for T-out-of-N ?
Cyclic Case

10

Shamir Secret Sharing

▪ Idea: each authorised subset of parties can write the secret as a
linear combination of their shares , then

L
s = λS,1s1 + ⋯ + λS,TsT

y = [λS,1s1]⋯[λS,TsT] x

▪ Problem 1: requires to be a ring with division, but is composite,G #G

▪ Remark: the denominator abs is bounded by N

▪ Solution: modify the generator so that all prime factors of ;N ≤ #G

De Feo L, Meyer M. Threshold schemes from isogeny assumptions

How to make this
for T-out-of-N ?
Cyclic Case

10

Shamir Secret Sharing

▪ Idea: each authorised subset of parties can write the secret as a
linear combination of their shares , then

L
s = λS,1s1 + ⋯ + λS,TsT

y = [λS,1s1]⋯[λS,TsT] x

▪ Problem 1: requires to be a ring with division, but is composite,G #G

▪ Remark: the denominator abs is bounded by N

▪ Solution: modify the generator so that all prime factors of ;N ≤ #G

▪ Problem 2: still requires rounds.T

De Feo L, Meyer M. Threshold schemes from isogeny assumptions

How to make this
for T-out-of-N ?
Cyclic Case

10

Shamir Secret Sharing

▪ Idea: each authorised subset of parties can write the secret as a
linear combination of their shares , then

L
s = λS,1s1 + ⋯ + λS,TsT

y = [λS,1s1]⋯[λS,TsT] x

▪ Problem 1: requires to be a ring with division, but is composite,G #G

▪ Remark: the denominator abs is bounded by N

▪ Solution: modify the generator so that all prime factors of ;N ≤ #G

▪ Problem 2: still requires rounds.T
▪ Problem 3: ZKPs becomes much more complicated (PVP)

De Feo L, Meyer M. Threshold schemes from isogeny assumptions

How to make this
for T-out-of-N ?
Non-Abelian Case

11 Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

How to make this
for T-out-of-N ?
Non-Abelian Case

11

Replicated Secret Sharing

Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

How to make this
for T-out-of-N ?
Non-Abelian Case

11

Replicated Secret Sharing
▪ Idea: increase (exponentially) the number of secrets and assign the
knowledge to multiple parties;

Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

How to make this
for T-out-of-N ?
Non-Abelian Case

11

Replicated Secret Sharing
▪ Idea: increase (exponentially) the number of secrets and assign the
knowledge to multiple parties;

▪ Example: 2-out-of-3 users:

Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

How to make this
for T-out-of-N ?
Non-Abelian Case

11

Replicated Secret Sharing
▪ Idea: increase (exponentially) the number of secrets and assign the
knowledge to multiple parties;

▪ Example: 2-out-of-3 users:

Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

A B C

How to make this
for T-out-of-N ?
Non-Abelian Case

11

Replicated Secret Sharing
▪ Idea: increase (exponentially) the number of secrets and assign the
knowledge to multiple parties;

▪ Example: 2-out-of-3 users:

Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

A B C

How to make this
for T-out-of-N ?
Non-Abelian Case

11

Replicated Secret Sharing
▪ Idea: increase (exponentially) the number of secrets and assign the
knowledge to multiple parties;

▪ Example: 2-out-of-3 users:

Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

A B C

{A,B}

How to make this
for T-out-of-N ?
Non-Abelian Case

11

Replicated Secret Sharing
▪ Idea: increase (exponentially) the number of secrets and assign the
knowledge to multiple parties;

▪ Example: 2-out-of-3 users:

Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

A B C

{A,C}{A,B}

How to make this
for T-out-of-N ?
Non-Abelian Case

11

Replicated Secret Sharing
▪ Idea: increase (exponentially) the number of secrets and assign the
knowledge to multiple parties;

▪ Example: 2-out-of-3 users:

Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

A B C

{B,C}{A,C}{A,B}

How to make this
for T-out-of-N ?
Non-Abelian Case

11

Replicated Secret Sharing
▪ Idea: increase (exponentially) the number of secrets and assign the
knowledge to multiple parties;

▪ Example: 2-out-of-3 users:

Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

A B C

{B,C}{A,C}{A,B}

How to make this
for T-out-of-N ?
Non-Abelian Case

11

Replicated Secret Sharing
▪ Idea: increase (exponentially) the number of secrets and assign the
knowledge to multiple parties;

▪ Example: 2-out-of-3 users:

Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

A B C

{B,C}{A,C}{A,B}

How to make this
for T-out-of-N ?
Non-Abelian Case

11

Replicated Secret Sharing
▪ Idea: increase (exponentially) the number of secrets and assign the
knowledge to multiple parties;

▪ Example: 2-out-of-3 users:

Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

A B C

{B,C}{A,C}{A,B}

How to make this
for T-out-of-N ?
Non-Abelian Case

11

Replicated Secret Sharing
▪ Idea: increase (exponentially) the number of secrets and assign the
knowledge to multiple parties;

▪ Example: 2-out-of-3 users:

Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

A B C

{B,C}{A,C}{A,B}

How to make this
for T-out-of-N ?
Non-Abelian Case

12

(1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian
sharing schemes and their application to threshold cryptography.

(2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E.
Enhancing Threshold Group Action Signature Schemes: Adaptive Security
and Scalability Improvements.

How to make this
for T-out-of-N ?
Non-Abelian Case

12

‘Vandermonde’ Secret Sharing

(1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian
sharing schemes and their application to threshold cryptography.

(2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E.
Enhancing Threshold Group Action Signature Schemes: Adaptive Security
and Scalability Improvements.

How to make this
for T-out-of-N ?
Non-Abelian Case

12

‘Vandermonde’ Secret Sharing
▪ Recursive idea, use algorithmically the Vandermonde inequality:

(1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian
sharing schemes and their application to threshold cryptography.

(2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E.
Enhancing Threshold Group Action Signature Schemes: Adaptive Security
and Scalability Improvements.

How to make this
for T-out-of-N ?
Non-Abelian Case

12

‘Vandermonde’ Secret Sharing
▪ Recursive idea, use algorithmically the Vandermonde inequality:

(N
T) =

T

∑
k=0

(b
k) ⋅ (N − b

T − k)

(1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian
sharing schemes and their application to threshold cryptography.

(2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E.
Enhancing Threshold Group Action Signature Schemes: Adaptive Security
and Scalability Improvements.

How to make this
for T-out-of-N ?
Non-Abelian Case

12

‘Vandermonde’ Secret Sharing
▪ Recursive idea, use algorithmically the Vandermonde inequality:

(N
T) =

T

∑
k=0

(b
k) ⋅ (N − b

T − k)
▪ Recursive evaluation of T-out-of-N:

(1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian
sharing schemes and their application to threshold cryptography.

(2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E.
Enhancing Threshold Group Action Signature Schemes: Adaptive Security
and Scalability Improvements.

How to make this
for T-out-of-N ?
Non-Abelian Case

12

‘Vandermonde’ Secret Sharing
▪ Recursive idea, use algorithmically the Vandermonde inequality:

(N
T) =

T

∑
k=0

(b
k) ⋅ (N − b

T − k)
▪ Recursive evaluation of T-out-of-N:

▪ If or share the secret in the ‘obvious way’T = 1 T = N

(1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian
sharing schemes and their application to threshold cryptography.

(2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E.
Enhancing Threshold Group Action Signature Schemes: Adaptive Security
and Scalability Improvements.

How to make this
for T-out-of-N ?
Non-Abelian Case

12

‘Vandermonde’ Secret Sharing
▪ Recursive idea, use algorithmically the Vandermonde inequality:

(N
T) =

T

∑
k=0

(b
k) ⋅ (N − b

T − k)
▪ Recursive evaluation of T-out-of-N:

▪ If or share the secret in the ‘obvious way’T = 1 T = N

▪ If or ignore the sharingT ≤ 0 T > N

(1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian
sharing schemes and their application to threshold cryptography.

(2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E.
Enhancing Threshold Group Action Signature Schemes: Adaptive Security
and Scalability Improvements.

How to make this
for T-out-of-N ?
Non-Abelian Case

12

‘Vandermonde’ Secret Sharing
▪ Recursive idea, use algorithmically the Vandermonde inequality:

(N
T) =

T

∑
k=0

(b
k) ⋅ (N − b

T − k)
▪ Recursive evaluation of T-out-of-N:

▪ If or share the secret in the ‘obvious way’T = 1 T = N

▪ If or ignore the sharingT ≤ 0 T > N
▪ Otherwise:

(1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian
sharing schemes and their application to threshold cryptography.

(2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E.
Enhancing Threshold Group Action Signature Schemes: Adaptive Security
and Scalability Improvements.

How to make this
for T-out-of-N ?
Non-Abelian Case

12

‘Vandermonde’ Secret Sharing
▪ Recursive idea, use algorithmically the Vandermonde inequality:

(N
T) =

T

∑
k=0

(b
k) ⋅ (N − b

T − k)
▪ Recursive evaluation of T-out-of-N:

▪ If or share the secret in the ‘obvious way’T = 1 T = N

▪ If or ignore the sharingT ≤ 0 T > N
▪ Otherwise:

▪ divide in two groups of size ≈ N/2

(1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian
sharing schemes and their application to threshold cryptography.

(2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E.
Enhancing Threshold Group Action Signature Schemes: Adaptive Security
and Scalability Improvements.

How to make this
for T-out-of-N ?
Non-Abelian Case

12

‘Vandermonde’ Secret Sharing
▪ Recursive idea, use algorithmically the Vandermonde inequality:

(N
T) =

T

∑
k=0

(b
k) ⋅ (N − b

T − k)
▪ Recursive evaluation of T-out-of-N:

▪ If or share the secret in the ‘obvious way’T = 1 T = N

▪ If or ignore the sharingT ≤ 0 T > N
▪ Otherwise:

▪ divide in two groups of size ≈ N/2

▪ for each do a -out-of- and -out-of- sharingk k N/2 T − k N/2

(1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian
sharing schemes and their application to threshold cryptography.

(2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E.
Enhancing Threshold Group Action Signature Schemes: Adaptive Security
and Scalability Improvements.

13

13

Replicated Secret Sharing
▪ Less efficient, but simpler

13

Replicated Secret Sharing
▪ Less efficient, but simpler

‘Vandermonde’ Secret Sharing
▪ More complicated, but efficient

13

Replicated Secret Sharing
▪ Less efficient, but simpler

‘Vandermonde’ Secret Sharing
▪ More complicated, but efficient

(N
T − 1)

13

Replicated Secret Sharing
▪ Less efficient, but simpler

‘Vandermonde’ Secret Sharing
▪ More complicated, but efficient

(N
T − 1) O (NTlog N)

How to make this
for T-out-of-N ?
Abelian Case (open)

14

How to make this
for T-out-of-N ?
Abelian Case (open)

14

▪ Problem: no field like structure (since is unknown):#G

How to make this
for T-out-of-N ?
Abelian Case (open)

14

▪ Problem: no field like structure (since is unknown):#G

λS,i =
∏j∈S j

∏j∈S (j − i)

How to make this
for T-out-of-N ?
Abelian Case (open)

14

▪ Problem: no field like structure (since is unknown):#G

λS,i =
∏j∈S j

∏j∈S (j − i)

I need to make
sense of this
division!

How to make this
for T-out-of-N ?
Abelian Case (open)

14

▪ Problem: no field like structure (since is unknown):#G

λS,i =
∏j∈S j

∏j∈S (j − i)

▪ Note: this is the same problem they had with RSA.

I need to make
sense of this
division!

How to make this
for T-out-of-N ?
Abelian Case (open)

14

▪ Problem: no field like structure (since is unknown):#G

λS,i =
∏j∈S j

∏j∈S (j − i)

▪ Note: this is the same problem they had with RSA.

▪ Solution 1a: work on and use LISS, not compatible with PVP.ℤ

I need to make
sense of this
division!

How to make this
for T-out-of-N ?
Abelian Case (open)

14

▪ Problem: no field like structure (since is unknown):#G

λS,i =
∏j∈S j

∏j∈S (j − i)

▪ Note: this is the same problem they had with RSA.

▪ Solution 1a: work on and use LISS, not compatible with PVP.ℤ

▪ Solution 1b: multiply by so we are in (compatible with PVP?)N! ℤ

I need to make
sense of this
division!

How to make this
for T-out-of-N ?
Abelian Case (open)

14

▪ Problem: no field like structure (since is unknown):#G

λS,i =
∏j∈S j

∏j∈S (j − i)

▪ Note: this is the same problem they had with RSA.

▪ Solution 1a: work on and use LISS, not compatible with PVP.ℤ

▪ Solution 1b: multiply by so we are in (compatible with PVP?)N! ℤ
▪ Solution 2: use previous Vandermonde Sharing:

I need to make
sense of this
division!

How to make this
for T-out-of-N ?
Abelian Case (open)

14

▪ Problem: no field like structure (since is unknown):#G

λS,i =
∏j∈S j

∏j∈S (j − i)

▪ Note: this is the same problem they had with RSA.

▪ Solution 1a: work on and use LISS, not compatible with PVP.ℤ

▪ Solution 1b: multiply by so we are in (compatible with PVP?)N! ℤ
▪ Solution 2: use previous Vandermonde Sharing:

▪ Active security with ZKPs or with Secure Randomness

I need to make
sense of this
division!

15

15

Rounds

Signing
Complexity

Share size

15

Rounds

Signing
Complexity

Share size

Shamir

Cyclic

2T + 1

O(N λ²)

O(1)

15

Rounds

Signing
Complexity

Share size

Shamir

Cyclic

2T + 1

O(N λ²)

O(1)

Replicated

Non-Abelian

15

O ((N
T − 1)λ)

O ((N
T − 1)λ)

2(N
T − 1) + 1

Rounds

Signing
Complexity

Share size

Shamir

Cyclic

2T + 1

O(N λ²)

O(1)

Replicated

Non-Abelian

Vandermonde

Non-Abelian

2T + 1

O(T λ)

O(NTlog Nλ)

15

O ((N
T − 1)λ)

O ((N
T − 1)λ)

2(N
T − 1) + 1

Rounds

Signing
Complexity

Share size

Shamir

Cyclic

2T + 1

O(N λ²)

O(1)

Replicated

Non-Abelian

Vandermonde

Non-Abelian

2T + 1

O(T λ)

Vandermonde

Abelian

T + 2

O(T λ)

O(NTlog Nλ)

15

O(NTlog Nλ)O ((N
T − 1)λ)

O ((N
T − 1)λ)

2(N
T − 1) + 1

How to distribute the
generation of the key?
(open)

16

(1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with
sharing-friendly keys.

(2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the
Quantum Security of the Vectorization Problem with Shifted Inputs.

(3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

How to distribute the
generation of the key?
(open)

16

▪ Option 1: CSI-SharK (1) introduces PVP,

(1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with
sharing-friendly keys.

(2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the
Quantum Security of the Vectorization Problem with Shifted Inputs.

(3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

How to distribute the
generation of the key?
(open)

16

▪ Option 1: CSI-SharK (1) introduces PVP,

▪ Requires an assumption that is quantumly broken (2).

(1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with
sharing-friendly keys.

(2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the
Quantum Security of the Vectorization Problem with Shifted Inputs.

(3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

How to distribute the
generation of the key?
(open)

16

▪ Option 1: CSI-SharK (1) introduces PVP,

▪ Requires an assumption that is quantumly broken (2).

▪ Option 2: Sashimi (3) approach in the KeyGen,

(1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with
sharing-friendly keys.

(2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the
Quantum Security of the Vectorization Problem with Shifted Inputs.

(3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

How to distribute the
generation of the key?
(open)

16

▪ Option 1: CSI-SharK (1) introduces PVP,

▪ Requires an assumption that is quantumly broken (2).

▪ Option 2: Sashimi (3) approach in the KeyGen,

▪ Working, but the number of iterations is ,(N
T − 1)

(1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with
sharing-friendly keys.

(2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the
Quantum Security of the Vectorization Problem with Shifted Inputs.

(3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

How to distribute the
generation of the key?
(open)

16

▪ Option 1: CSI-SharK (1) introduces PVP,

▪ Requires an assumption that is quantumly broken (2).

▪ Option 2: Sashimi (3) approach in the KeyGen,

▪ Working, but the number of iterations is ,(N
T − 1)

▪ Assumption not secure for the non-abelian case,

(1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with
sharing-friendly keys.

(2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the
Quantum Security of the Vectorization Problem with Shifted Inputs.

(3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

How to distribute the
generation of the key?
(open)

16

▪ Option 1: CSI-SharK (1) introduces PVP,

▪ Requires an assumption that is quantumly broken (2).

▪ Option 2: Sashimi (3) approach in the KeyGen,

▪ Working, but the number of iterations is ,(N
T − 1)

▪ Assumption not secure for the non-abelian case,

▪ Option 2b: Extractable ZKPoK with commitment at the start to
the secret.

(1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with
sharing-friendly keys.

(2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the
Quantum Security of the Vectorization Problem with Shifted Inputs.

(3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

How to distribute the
generation of the key?
(open)

16

▪ Option 1: CSI-SharK (1) introduces PVP,

▪ Requires an assumption that is quantumly broken (2).

▪ Option 2: Sashimi (3) approach in the KeyGen,

▪ Working, but the number of iterations is ,(N
T − 1)

▪ Assumption not secure for the non-abelian case,

▪ Option 2b: Extractable ZKPoK with commitment at the start to
the secret.

▪ Option 3 [OPEN]: can we have DKG for the Vandermonde Sharing?

(1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with
sharing-friendly keys.

(2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the
Quantum Security of the Vectorization Problem with Shifted Inputs.

(3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce
an actively secure distributed signing protocol.

17

Thanks

