Threshold signatures from different group actions

Giacomo Borin 2025.04.30 - SQIparty - Lleida SPAIN

Introduction of different group actions

- Introduction of different group actions
- N-out-of-N case

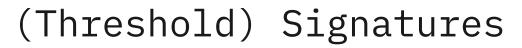
- Introduction of different group actions
 - N-out-of-N case
 - Active security

- Introduction of different group actions
- N-out-of-N case
- Active security
- T-out-of-N case

- Introduction of different group actions
- N-out-of-N case
- Active security
- T-out-of-N case
- Few words on open problems and DKG

||....

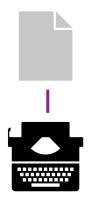
(Threshold) Signatures



An (T,N)-threshold digital signature scheme is a protocol where any subset of at least T out of N key owners can sign an agreed message, but not one of less than T.

||....|

(Threshold) Signatures



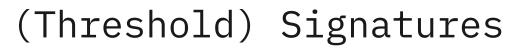
(Threshold) Signatures

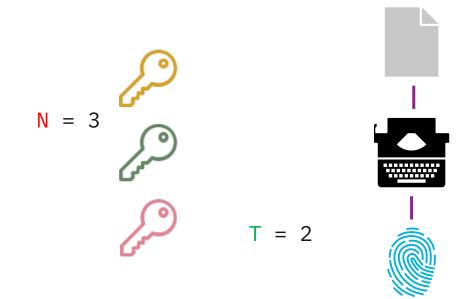
.....



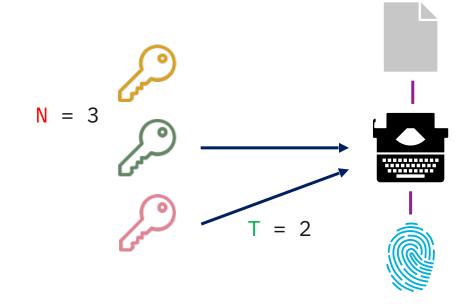
An (T,N)-threshold digital signature scheme is a protocol where any subset of at least T out of N key owners can sign an agreed message, but not one of less than T.

.....

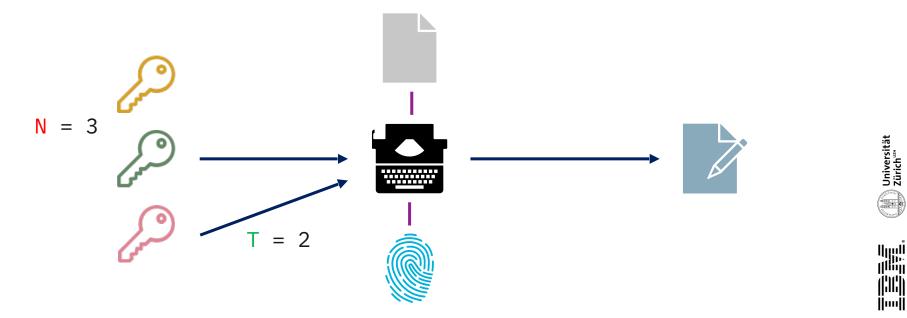




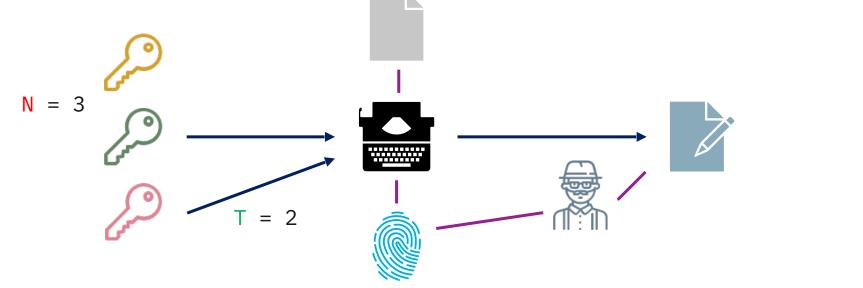
(Threshold) Signatures



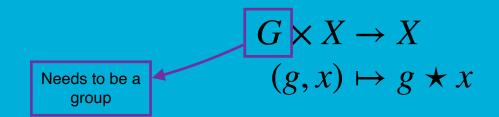
(Threshold) Signatures

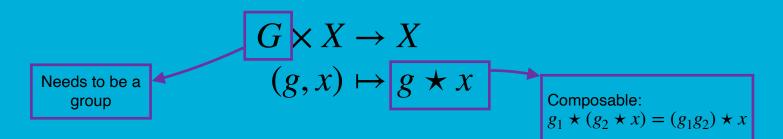


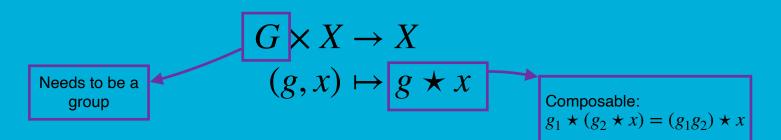
(Threshold) Signatures



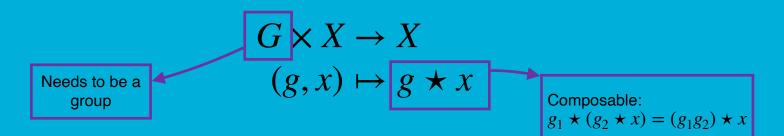
 $G \times X \to X$ $(g, x) \mapsto g \star x$



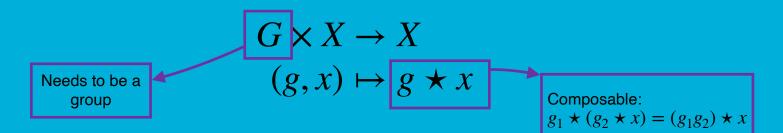




• Effective, i.e. we can efficiently:

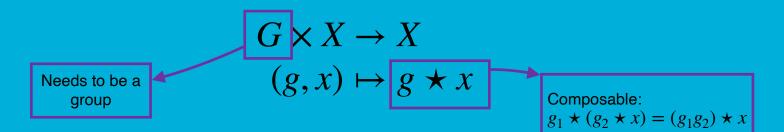


- Effective, i.e. we can efficiently:
 - compute, sample & canonically represent elements in G

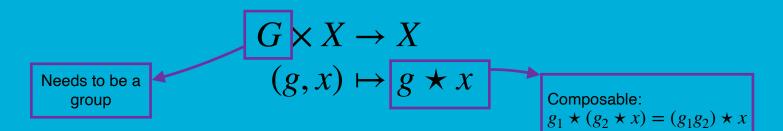


• Effective, i.e. we can efficiently:

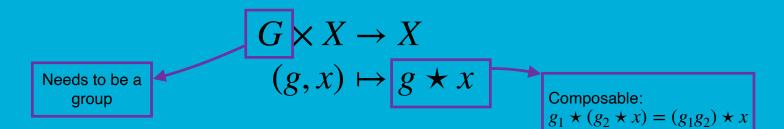
- compute, <u>sample & canonically represent elements</u> in G
- compute the action of <u>all the elements</u> of G



- Effective, i.e. we can efficiently:
 - compute, sample & canonically represent elements in G
 - compute the action of <u>all the elements</u> of G
- Cryptographic:

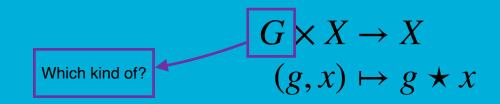


- Effective, i.e. we can efficiently:
 - compute, <u>sample & canonically represent elements</u> in G
 - compute the action of <u>all the elements</u> of G
- Cryptographic:
 - Vectorization: given x, y it is hard to find g s.t. $g \star x = y$



- Effective, i.e. we can efficiently:
 - compute, <u>sample & canonically represent elements</u> in G
 - compute the action of <u>all the elements</u> of G
- Cryptographic:
 - Vectorization: given x, y it is hard to find g s.t. $g \star x = y$
 - Parallelisation: given $x, y = g \star x, z = h \star x$ and w it is hard to say if $w = (gh) \star x$

 $G \times X \to X$ $(g, x) \mapsto g \star x$





Isomorphism problems from Tensors/Coding Theory (1)+ > Non-Abelian

(1) Barenghi A, Biasse JF, Persichetti E, Santini P. LESS-FM: fine-tuning signatures from the code equivalence problem.

$$\begin{array}{c} G \times X \to X \\ \hline g, x) \mapsto g \star x \end{array}$$

Isomorphism problems from Tensors/Coding Theory (1)+ > Non-Abelian

Class Group acting on Oriented Supersingular Elliptic Curves:

(1) Barenghi A, Biasse JF, Persichetti E, Santini P. LESS-FM: fine-tuning signatures from the code equivalence problem.

$$\begin{array}{c} G \times X \to X \\ \hline g, x) \mapsto g \star x \end{array}$$

Isomorphism problems from Tensors/Coding Theory (1)+ > Non-Abelian

- Class Group acting on Oriented Supersingular Elliptic Curves:
 - CSI-FiSh (2) > **Cyclic** > We can work with $\mathbb{Z}/\#G\mathbb{Z}$

(1)Barenghi A, Biasse JF, Persichetti E, Santini P. LESS-FM: fine-tuning signatures from the code equivalence problem.
(2)Beullens W, Kleinjung T, Vercauteren F. CSI-FiSh: efficient isogeny based signatures through class group computations.

liiil

llin

$$\begin{array}{c} G \times X \to X \\ \hline g, x) \mapsto g \star x \end{array}$$

Isomorphism problems from Tensors/Coding Theory (1)+ > Non-Abelian

Class Group acting on Oriented Supersingular Elliptic Curves:

- CSI-FiSh (2) > **Cyclic** > We can work with $\mathbb{Z}/\#G\mathbb{Z}$
- PEGASIS (3) > Abelian

(1)Barenghi A, Biasse JF, Persichetti E, Santini P. LESS-FM: fine-tuning signatures from the code equivalence problem.

(2) Beullens W, Kleinjung T, Vercauteren F. CSI-FiSh: efficient isogeny based signatures through class group computations.

(3) Dartois P, Eriksen JK, Fouotsa TB, Le Merdy AH, Invernizzi R, Robert D, Rueger R, Vercauteren F, Wesolowski B, PEGASIS: Practical

Universität Zürich^{uss}

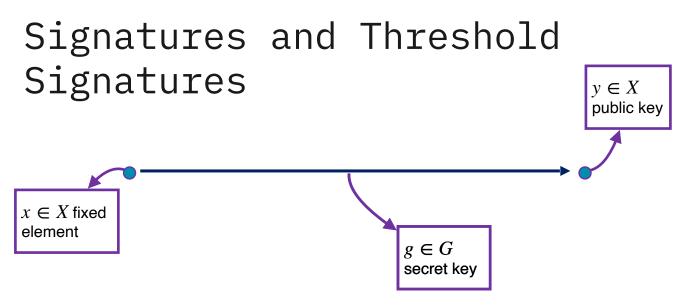
Inni

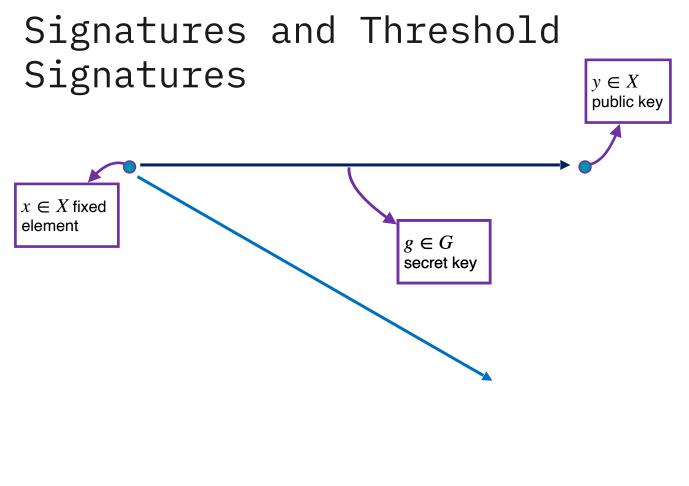
Effective Class Group Action using 4-Dimensional Isogenies.

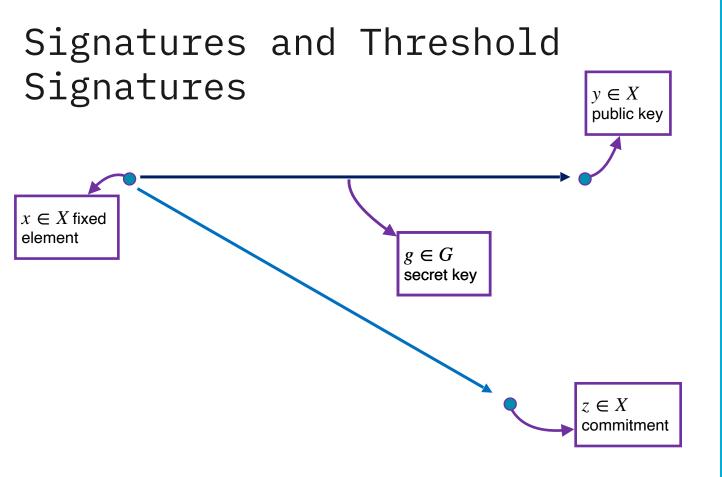
Signatures and Threshold Signatures

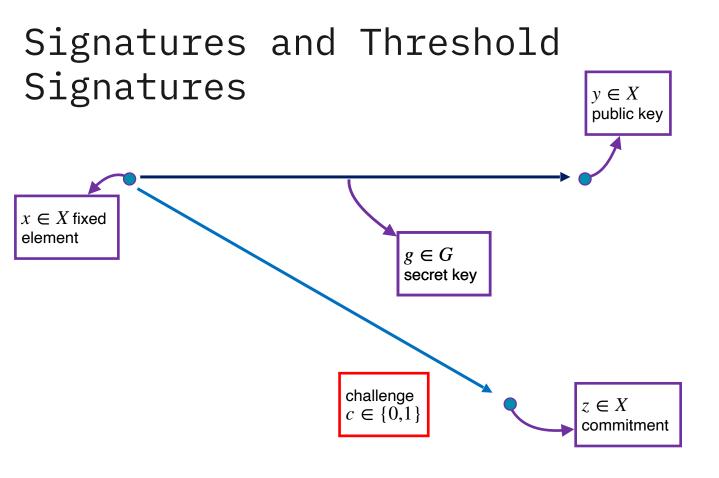
Signatures and Threshold Signatures

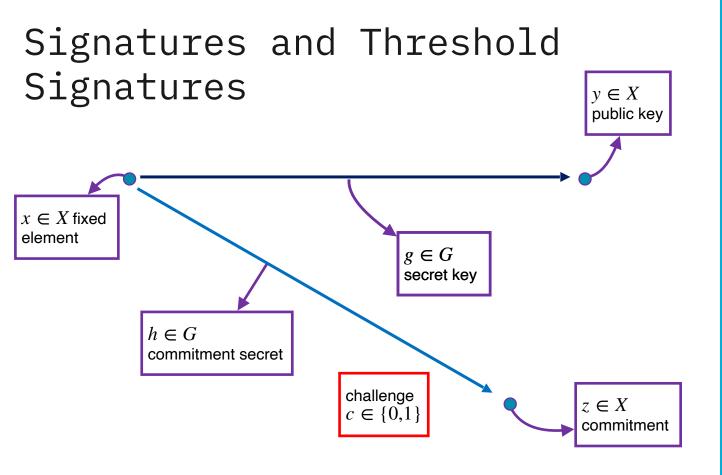
Signatures and Threshold Signatures

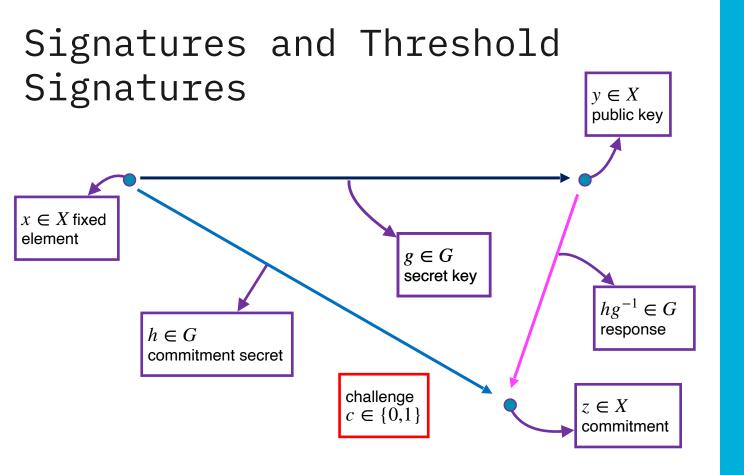


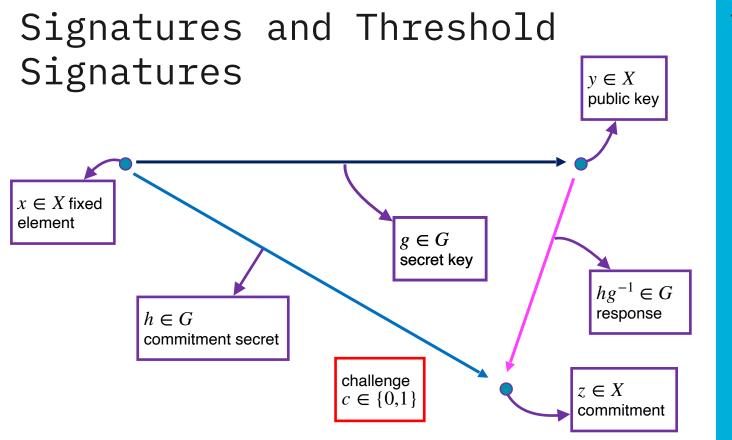




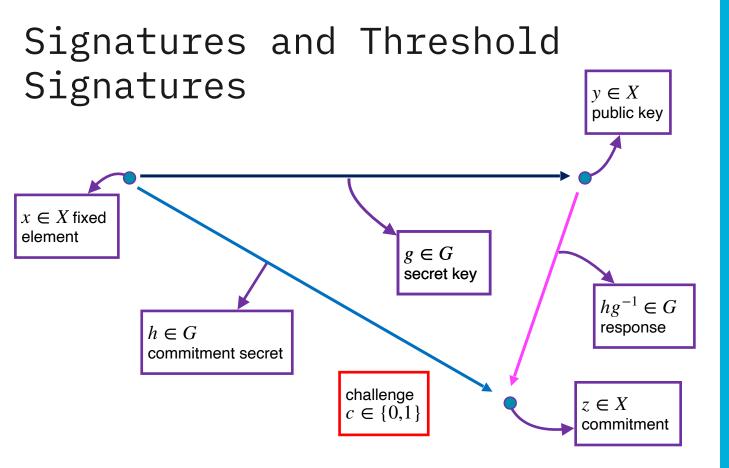








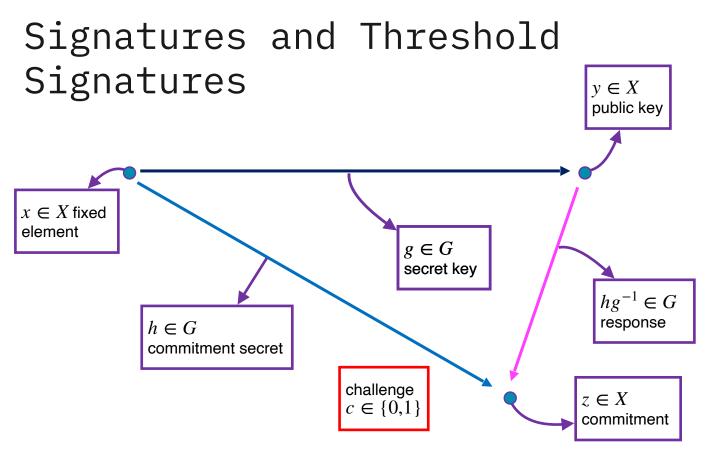
-Repeat λ times;



(1) De Feo L, Galbraith SD. SeaSign: compact isogeny signatures from class group actions

-Repeat λ times;

-With Fiat-Shamir transform you get a signature;



-Repeat λ times;

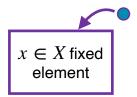
-With Fiat-Shamir transform you get a signature;

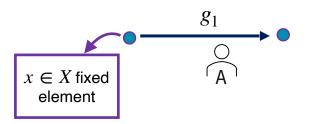
-Boneh et.al. (2): you need to do that at least λ group actions.

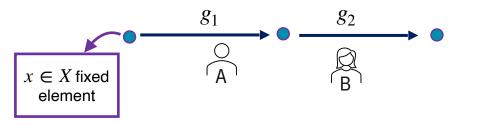
> Universität Zürich

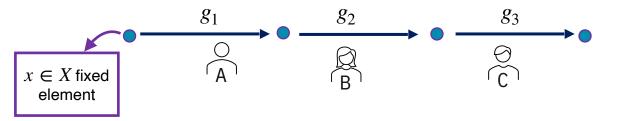
 De Feo L, Galbraith SD. SeaSign: compact isogeny signatures from class group actions
 Boneh D, Guan J, Zhandry M. A lower bound on the length of signatures based on group actions and generic isogenies.

6

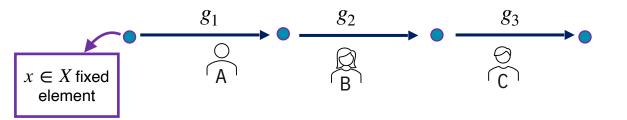


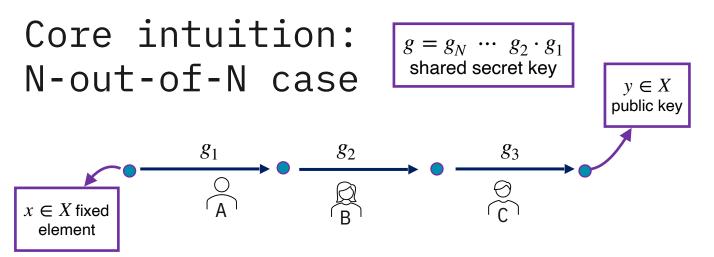


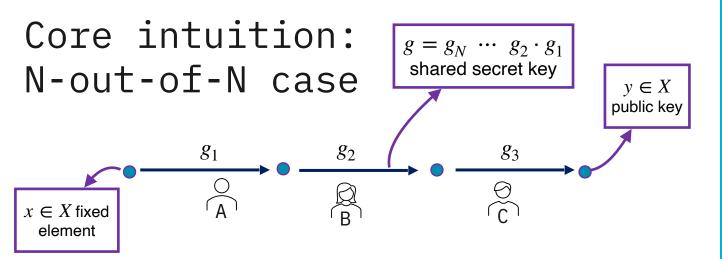


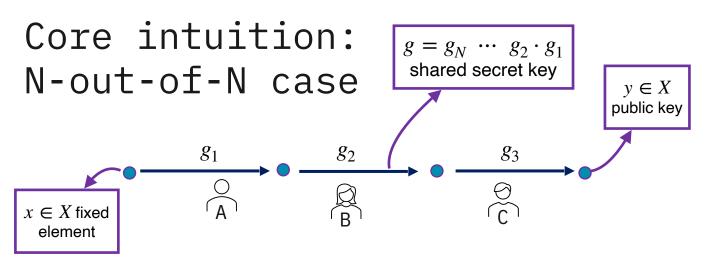


 $g = g_N \cdots g_2 \cdot g_1$ shared secret key

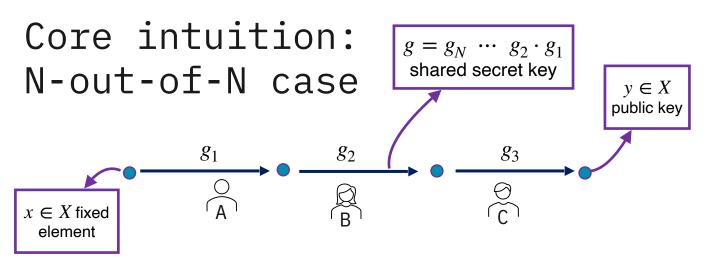


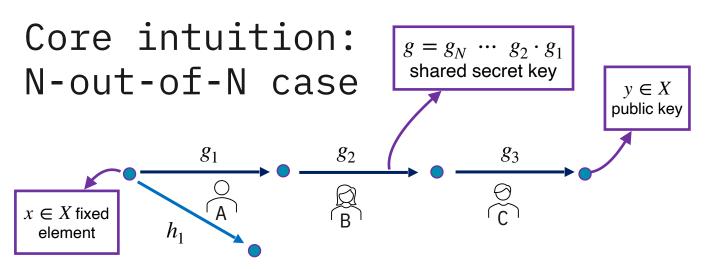


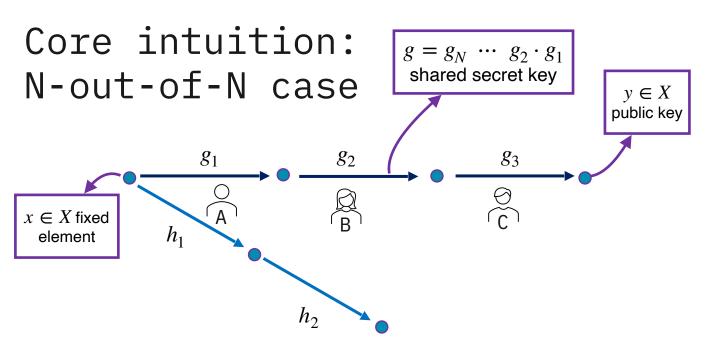




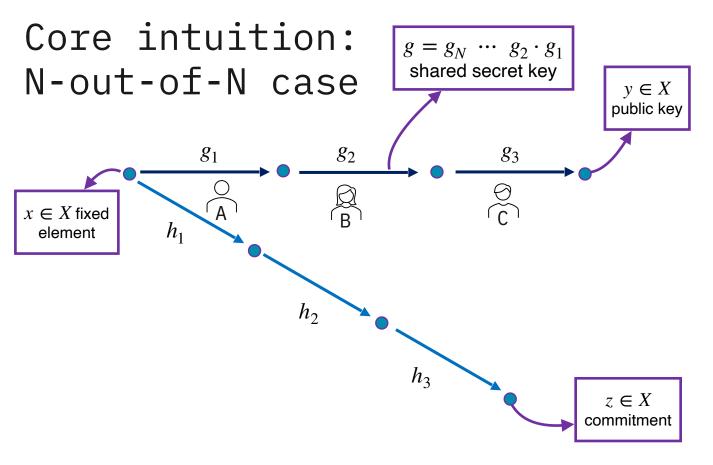
- the intermediate pks are in relation given by:

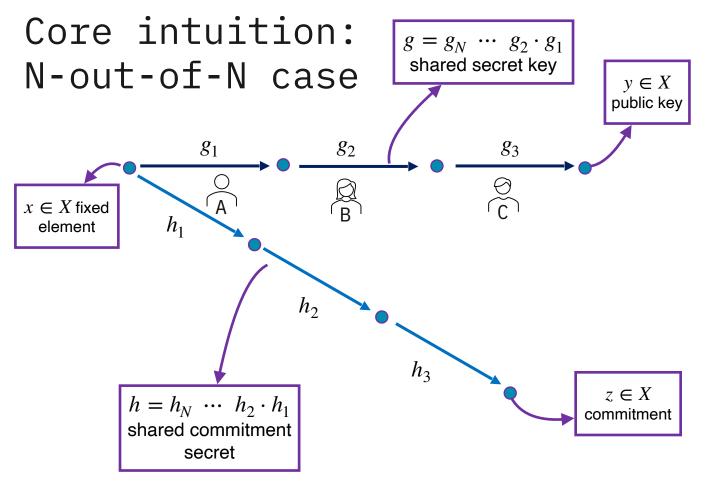




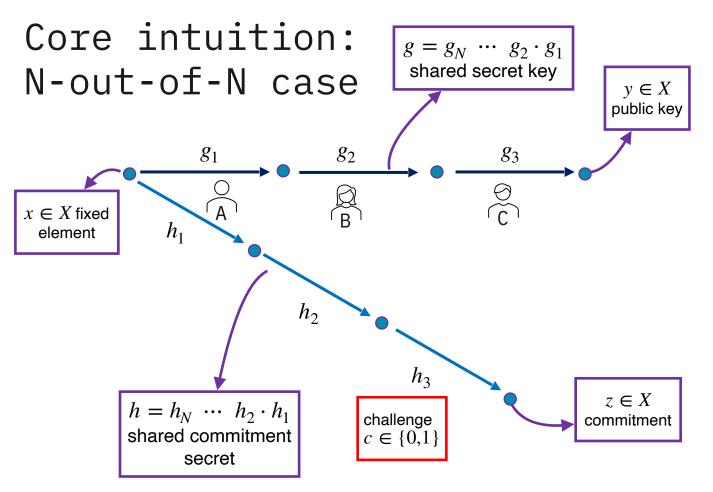


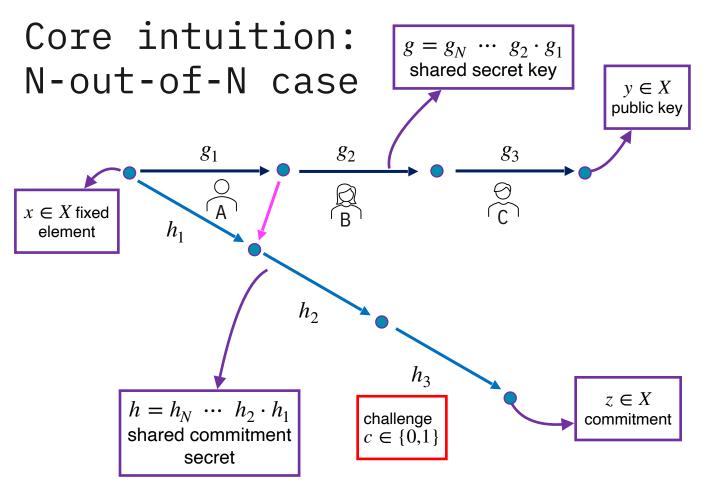
> Universität Zürich

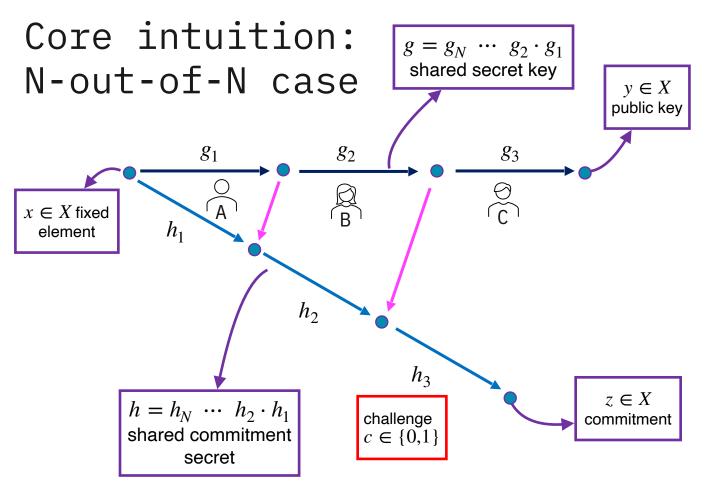


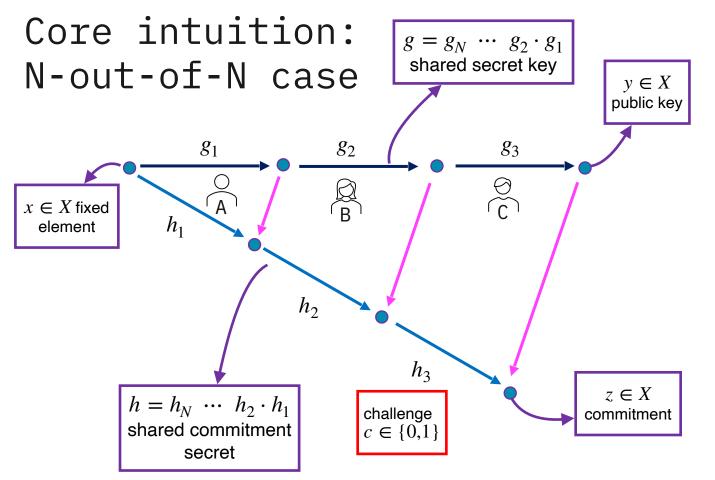


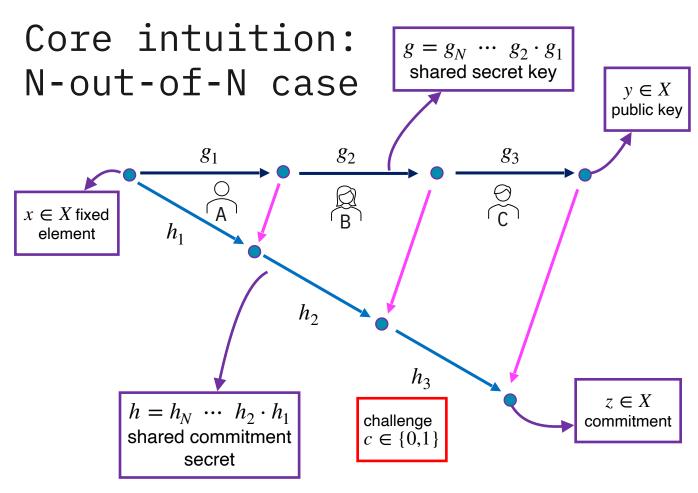
Universität





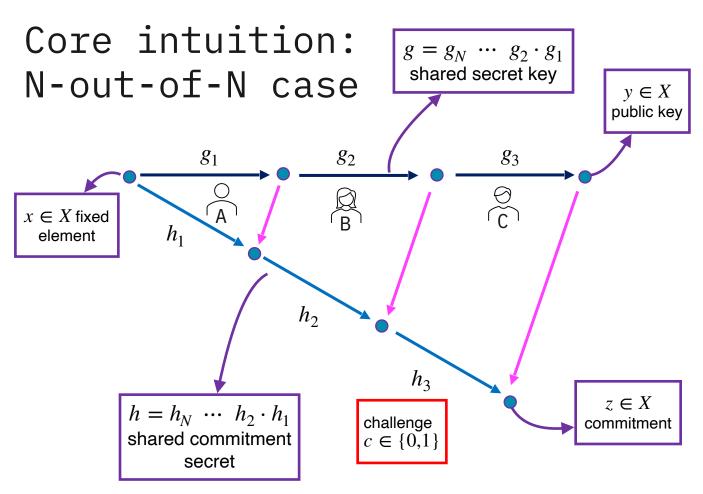






- the intermediate pks are in relation given by: $y_{i+1} = g_{i+1} \star y_i$ - in the abelian case we can compress the response phase to one round

Universität



- the intermediate pks are in relation given by: $y_{i+1} = g_{i+1} \star y_i$ - in the abelian case we can compress the response phase to one round - the hard part

is the sharing the secret, in the secret, is the secret, is not the commitment

IIIII

EE, Windersität

||.....|

How to make this secure against active attackers?

 In an active scenario the last user can always perform a basic version of the ROS attack;

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

- In an active scenario the last user can always perform a basic version of the ROS attack;
- Solution from (1):

lluul

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

- In an active scenario the last user can always perform a basic version of the ROS attack;
- Solution from (1):
 - Add a ZKPoK for every action performed in commitment generation;

[[1111]

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

- In an active scenario the last user can always perform a basic version of the ROS attack;
- Solution from (1):
 - Add a ZKPoK for every action performed in commitment generation;
 - Con: Very inefficient (memo: Boneh et.al. result);

||1111

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

- In an active scenario the last user can always perform a basic version of the ROS attack;
- Solution from (1):
 - Add a ZKPoK for every action performed in commitment generation;
 - Con: Very inefficient (memo: Boneh et.al. result);
 - Pro: Simple and imply adaptive security.

||1111

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

(2) Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

- In an active scenario the last user can always perform a basic version of the ROS attack;
- Solution from (1):
 - Add a ZKPoK for every action performed in commitment generation;
 - Con: Very inefficient (memo: Boneh et.al. result);
 - Pro: Simple and imply adaptive security.
- Solution from (2):

[[.....]

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

(2) Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

- In an active scenario the last user can always perform a basic version of the ROS attack;
- Solution from (1):
 - Add a ZKPoK for every action performed in commitment generation;
 - Con: Very inefficient (memo: Boneh et.al. result);
 - Pro: Simple and imply adaptive security.
- Solution from (2):
 - use secure randomness + verify all intermediate signatures

How to make this secure against active attackers?

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

(2) Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

- In an active scenario the last user can always perform a basic version of the ROS attack;
- Solution from (1):
 - Add a ZKPoK for every action performed in commitment generation;
 - Con: Very inefficient (memo: Boneh et.al. result);
 - Pro: Simple and imply adaptive security.
- Solution from (2):
 - use secure randomness + verify all intermediate signatures
 - Pro: Much more efficient;

[[1111]

How to make this secure against active attackers?

(1) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

(2) Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

- In an active scenario the last user can always perform a basic version of the ROS attack;
- Solution from (1):
 - Add a ZKPoK for every action performed in commitment generation;
 - Con: Very inefficient (memo: Boneh et.al. result);
 - Pro: Simple and imply adaptive security.
- Solution from (2):
 - use secure randomness + verify all intermediate signatures
 - Pro: Much more efficient;
 - Con: Requires to know all intermediate public keys.

# Rounds		
Complexity		
Share size		

	Passive, Non-Abelian		
# Rounds	N + N		
Complexity	Ο(Ν λ)		
Share size	Ο(λ)		

	Passive, Non-Abelian	Passive, Abelian	
# Rounds	N + N	N + 1	
Complexity	Ο(Ν λ)	Ο(Ν λ)	
Share size	Ο(λ)	Ο(λ)	

	Passive, Non-Abelian	Passive, Abelian	Active, with ZKPs	
# Rounds	N + N	N + 1	N + 1 + 1	
Complexity	Ο(Ν λ)	Ο(Ν λ)	O(N λ²)	
Share size	Ο(λ)	Ο(λ)	Ο(λ)	

	Passive, Non-Abelian	Passive, Abelian	Active, with ZKPs	Active, with Secure Randomness
# Rounds	N + N	N + 1	N + 1 + 1	N + N + 1
Complexity	Ο(Ν λ)	Ο(Ν λ)	O(N λ²)	Ο(Ν λ)
Share size	Ο(λ)	Ο(λ)	Ο(λ)	Ο(Ν λ)

How to make this for T-out-of-N ? <u>Cyclic Case</u>

De Feo L, Meyer M. Threshold schemes from isogeny assumptions

Universität

How to make this for T-out-of-N ? <u>Cyclic Case</u>

De Feo L, Meyer M. Threshold schemes from isogeny assumptions

Shamir Secret Sharing

IIII

How to make this for T-out-of-N ? <u>Cyclic Case</u> De Feo L, Meyer M. Threshold schemes from isogeny assumptions

Shamir Secret Sharing

- Idea: each authorised subset of parties L can write the secret as a linear combination of their shares $s = \lambda_{S,1}s_1 + \cdots + \lambda_{S,T}s_T$, then $y = [\lambda_{S,1}s_1] \cdots [\lambda_{S,T}s_T] x$

How to make this for T-out-of-N ? <u>Cyclic Case</u>

Shamir Secret Sharing

- Idea: each authorised subset of parties L can write the secret as a linear combination of their shares $s = \lambda_{S,1}s_1 + \cdots + \lambda_{S,T}s_T$, then $y = [\lambda_{S,1}s_1] \cdots [\lambda_{S,T}s_T] x$
- Problem 1: requires G to be a ring with division, but #G is composite,

How to make this for T-out-of-N ? <u>Cyclic Case</u>

Shamir Secret Sharing

- Idea: each authorised subset of parties L can write the secret as a linear combination of their shares $s = \lambda_{S,1}s_1 + \cdots + \lambda_{S,T}s_T$, then $y = [\lambda_{S,1}s_1] \cdots [\lambda_{S,T}s_T] x$
- **Problem 1**: requires G to be a ring with division, but #G is composite,
 - **Remark:** the denominator abs is bounded by N

How to make this for T-out-of-N ? <u>Cyclic Case</u>

Shamir Secret Sharing

- Idea: each authorised subset of parties L can write the secret as a linear combination of their shares $s = \lambda_{S,1}s_1 + \cdots + \lambda_{S,T}s_T$, then $y = [\lambda_{S,1}s_1] \cdots [\lambda_{S,T}s_T] x$
- Problem 1: requires G to be a ring with division, but #G is composite,
 - Remark: the denominator abs is bounded by ${\cal N}$
 - Solution: modify the generator so that $N \leq all$ prime factors of #G;

How to make this for T-out-of-N ? <u>Cyclic Case</u>

Shamir Secret Sharing

- Idea: each authorised subset of parties L can write the secret as a linear combination of their shares $s = \lambda_{S,1}s_1 + \cdots + \lambda_{S,T}s_T$, then $y = [\lambda_{S,1}s_1] \cdots [\lambda_{S,T}s_T] x$
- Problem 1: requires G to be a ring with division, but #G is composite,
 - **Remark:** the denominator abs is bounded by N
 - Solution: modify the generator so that $N \leq all$ prime factors of #G;
- **Problem 2:** still requires T rounds.

Universität Zürich

Universität Zürich

How to make this for T-out-of-N ? <u>Cyclic Case</u>

Shamir Secret Sharing

- Idea: each authorised subset of parties L can write the secret as a linear combination of their shares $s = \lambda_{S,1}s_1 + \cdots + \lambda_{S,T}s_T$, then $y = [\lambda_{S,1}s_1] \cdots [\lambda_{S,T}s_T] x$
- Problem 1: requires G to be a ring with division, but #G is composite,
 - **Remark:** the denominator abs is bounded by N
 - Solution: modify the generator so that $N \leq all$ prime factors of #G;
- **Problem 2:** still requires T rounds.
- Problem 3: ZKPs becomes much more complicated (PVP)

Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

Replicated Secret Sharing

Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

Replicated Secret Sharing

 Idea: increase (<u>exponentially</u>) the number of secrets and assign the knowledge to multiple parties;

Battagliola M, Borin G, Meneghetti A, Persichetti E. Cutting the grass: Threshold group action signature schemes.

Universität Zürich^{uze}

ANL

lluul

Idea: increase (<u>exponentially</u>) the number of secrets and assign the knowledge to multiple parties;

Replicated Secret Sharing

Example: 2-out-of-3 users:

11

How to make this for T-out-of-N ? Non-Abelian Case

How to make this for T-out-of-N ? Non-Abelian Case

Replicated Secret Sharing

- Idea: increase (<u>exponentially</u>) the number of secrets and assign the knowledge to multiple parties;
- Example: 2-out-of-3 users:

for T-out-of-N ? Non-Abelian Case **Replicated Secret Sharing**

- Idea: increase (<u>exponentially</u>) the number of secrets and assign the knowledge to multiple parties;
- Example: 2-out-of-3 users:

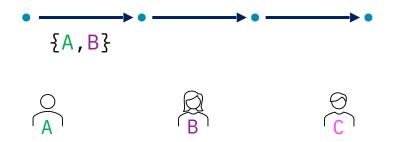
11

How to make this

How to make this for T-out-of-N ? <u>Non-Abelian Case</u>

Replicated Secret Sharing

- Idea: increase (<u>exponentially</u>) the number of secrets and assign the knowledge to multiple parties;
- Example: 2-out-of-3 users:



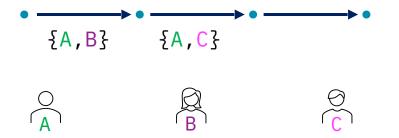
lluul

lluul

How to make this for T-out-of-N ? <u>Non-Abelian Case</u>

Replicated Secret Sharing

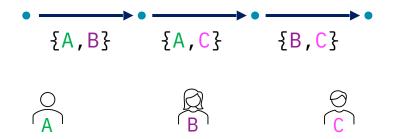
- Idea: increase (<u>exponentially</u>) the number of secrets and assign the knowledge to multiple parties;
- Example: 2-out-of-3 users:



How to make this for T-out-of-N ? Non-Abelian Case

Replicated Secret Sharing

- Idea: increase (<u>exponentially</u>) the number of secrets and assign the knowledge to multiple parties;
- Example: 2-out-of-3 users:



Universität Zürich

lluul

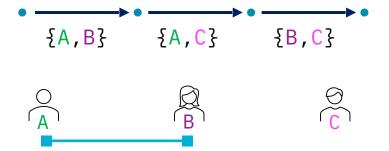
<u>Non-Abelian Case</u> **Replicated Secret Sharing**

- Idea: increase (<u>exponentially</u>) the number of secrets and assign the knowledge to multiple parties;
- Example: 2-out-of-3 users:

11

How to make this

for T-out-of-N ?



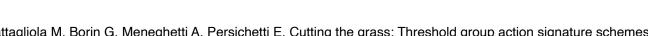
How to make this for T-out-of-N ? Non-Abelian Case

Replicated Secret Sharing

Idea: increase (<u>exponentially</u>) the number of secrets and assign the knowledge to multiple parties;

∃B,C}

Example: 2-out-of-3 users:



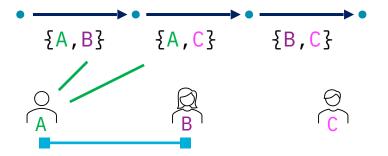
₹A,B₹ **₹A,C**₹

lluul

- Idea: increase (<u>exponentially</u>) the number of secrets and assign the knowledge to multiple parties;
- Example: 2-out-of-3 users:

11

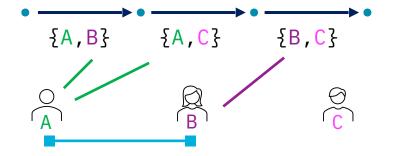
How to make this



How to make this for T-out-of-N ? <u>Non-Abelian Case</u>

Replicated Secret Sharing

- Idea: increase (<u>exponentially</u>) the number of secrets and assign the knowledge to multiple parties;
- Example: 2-out-of-3 users:



- (1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian sharing schemes and their application to threshold cryptography.
- (2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E. Enhancing Threshold Group Action Signature Schemes: Adaptive Security and Scalability Improvements.

- (1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian sharing schemes and their application to threshold cryptography.
- (2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E. Enhancing Threshold Group Action Signature Schemes: Adaptive Security and Scalability Improvements.

'Vandermonde' Secret Sharing

||....||

- (1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian sharing schemes and their application to threshold cryptography.
- (2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E. Enhancing Threshold Group Action Signature Schemes: Adaptive Security and Scalability Improvements.

'Vandermonde' Secret Sharing

Recursive idea, use algorithmically the Vandermonde inequality:

- (1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian sharing schemes and their application to threshold cryptography.
- (2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E. Enhancing Threshold Group Action Signature Schemes: Adaptive Security and Scalability Improvements.

'Vandermonde' Secret Sharing

- Recursive idea, use algorithmically the Vandermonde inequality:

$$\binom{N}{T} = \sum_{k=0}^{T} \binom{b}{k} \cdot \binom{N-b}{T-k}$$

lluul

- (1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian sharing schemes and their application to threshold cryptography.
- (2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E. Enhancing Threshold Group Action Signature Schemes: Adaptive Security and Scalability Improvements.

'Vandermonde' Secret Sharing

- Recursive idea, use algorithmically the Vandermonde inequality:

$$\binom{N}{T} = \sum_{k=0}^{T} \binom{b}{k} \cdot \binom{N-b}{T-k}$$

Recursive evaluation of T-out-of-N:

|:||;

||1111

- (1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian sharing schemes and their application to threshold cryptography.
- (2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E. Enhancing Threshold Group Action Signature Schemes: Adaptive Security and Scalability Improvements.

'Vandermonde' Secret Sharing

Recursive idea, use algorithmically the Vandermonde inequality:

$$\binom{N}{T} = \sum_{k=0}^{T} \binom{b}{k} \cdot \binom{N-b}{T-k}$$

Recursive evaluation of T-out-of-N:

• If T = 1 or T = N share the secret in the 'obvious way'

||1111

- (1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian sharing schemes and their application to threshold cryptography.
- (2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E. Enhancing Threshold Group Action Signature Schemes: Adaptive Security and Scalability Improvements.

'Vandermonde' Secret Sharing

Recursive idea, use algorithmically the Vandermonde inequality:

$$\binom{N}{T} = \sum_{k=0}^{T} \binom{b}{k} \cdot \binom{N-b}{T-k}$$

Recursive evaluation of T-out-of-N:

- If T = 1 or T = N share the secret in the 'obvious way'
- If $T \leq 0$ or T > N ignore the sharing

||1111

- (1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian sharing schemes and their application to threshold cryptography.
- (2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E. Enhancing Threshold Group Action Signature Schemes: Adaptive Security and Scalability Improvements.

'Vandermonde' Secret Sharing

Recursive idea, use algorithmically the Vandermonde inequality:

$$\binom{N}{T} = \sum_{k=0}^{T} \binom{b}{k} \cdot \binom{N-b}{T-k}$$

Recursive evaluation of T-out-of-N:

- If T = 1 or T = N share the secret in the 'obvious way'
- If $T \leq 0$ or T > N ignore the sharing
- Otherwise:

||1111

- (1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian sharing schemes and their application to threshold cryptography.
- (2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E. Enhancing Threshold Group Action Signature Schemes: Adaptive Security and Scalability Improvements.

'Vandermonde' Secret Sharing

Recursive idea, use algorithmically the Vandermonde inequality:

$$\binom{N}{T} = \sum_{k=0}^{T} \binom{b}{k} \cdot \binom{N-b}{T-k}$$

Recursive evaluation of T-out-of-N:

- If T = 1 or T = N share the secret in the 'obvious way'
- If $T \leq 0$ or T > N ignore the sharing
- Otherwise:
 - divide in two groups of size pprox N/2

||1111

- (1) Desmedt Y, Di Crescenzo G, Burmester M. Multiplicative non-abelian sharing schemes and their application to threshold cryptography.
- (2) Battagliola M, Borin G, Di Crescenzo G, Meneghetti A, Persichetti E. Enhancing Threshold Group Action Signature Schemes: Adaptive Security and Scalability Improvements.

'Vandermonde' Secret Sharing

- Recursive idea, use algorithmically the Vandermonde inequality:

$$\binom{N}{T} = \sum_{k=0}^{T} \binom{b}{k} \cdot \binom{N-b}{T-k}$$

Recursive evaluation of T-out-of-N:

- If T = 1 or T = N share the secret in the 'obvious way'
- If $T \leq 0$ or T > N ignore the sharing
- Otherwise:
 - divide in two groups of size $\approx N/2$
 - for each k do a k-out-of-N/2 and T k-out-of-N/2 sharing

[[1111]

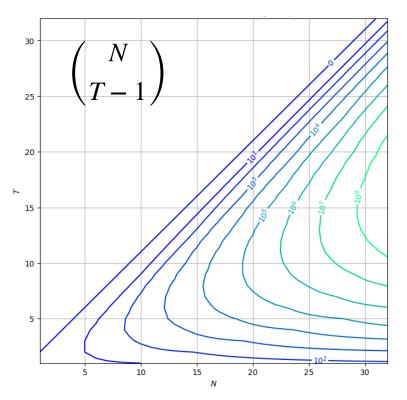
• Less efficient, but simpler

Less efficient, but simpler

'Vandermonde' Secret Sharing

More complicated, but efficient

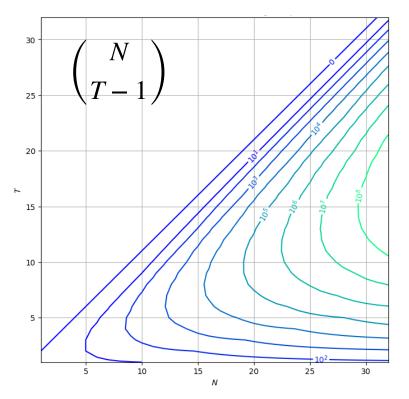
Less efficient, but simpler



'Vandermonde' Secret Sharing

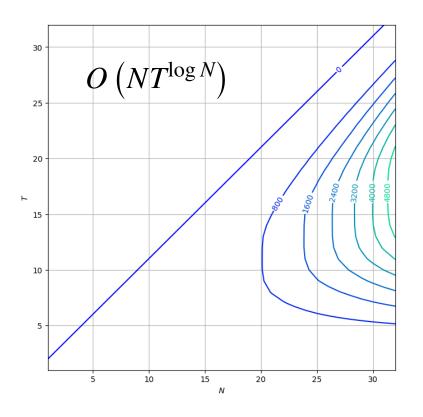
More complicated, but efficient

Less efficient, but simpler



'Vandermonde' Secret Sharing

More complicated, but efficient



Universität Zürich

```
How to make this
for T-out-of-N ?
<u>Abelian Case</u> (open)
```



```
How to make this
for T-out-of-N ?
<u>Abelian Case</u> (open)
```

• **Problem:** no field like structure (since #G is unknown):

()))))) ()((()))

IIIII

• **Problem:** no field like structure (since #G is unknown):

$$\lambda_{S,i} = \frac{\prod_{j \in S} j}{\prod_{j \in S} (j-i)}$$

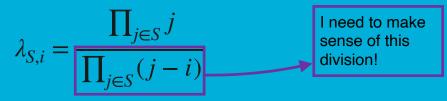
()))))) ()((()))

Universität Zürich^{um}

Inn

How to make this for T-out-of-N ? <u>Abelian Case</u> (open)

• **Problem:** no field like structure (since #G is unknown):



1111

I need to make sense of this division!

How to make this for T-out-of-N ? <u>Abelian Case</u> (open)

• **Problem:** no field like structure (since #G is unknown):

 $\frac{\prod_{j \in S} j}{(i - j)}$

• Note: this is the same problem they had with RSA.

• **Problem:** no field like structure (since #G is unknown):

• Note: this is the same problem they had with RSA.

• Solution 1a: work on \mathbb{Z} and use LISS, not compatible with PVP.

I need to make sense of this division!

How to make this for T-out-of-N ? <u>Abelian Case</u> (open)

• **Problem:** no field like structure (since #*G* is unknown):

- Note: this is the same problem they had with RSA.
- Solution 1a: work on $\mathbb Z$ and use LISS, not compatible with PVP.
- Solution 1b: multiply by N! so we are in \mathbb{Z} (compatible with PVP?)

 $\frac{\prod_{j \in S} j}{\prod_{j \in S} (j - 1)}$

()))))) ()()))) ()())))

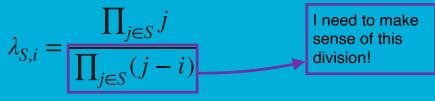
()))))) ()()))) ()())))

How to make this for T-out-of-N ? <u>Abelian Case</u> (open)

• **Problem:** no field like structure (since #*G* is unknown):

• Note: this is the same problem they had with RSA.

- Solution 1a: work on $\mathbb Z$ and use LISS, not compatible with PVP.
- Solution 1b: multiply by N! so we are in \mathbb{Z} (compatible with PVP?)
- Solution 2: use previous Vandermonde Sharing:

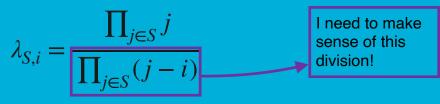


How to make this for T-out-of-N ? <u>Abelian Case</u> (open)

• **Problem:** no field like structure (since #G is unknown):

• Note: this is the same problem they had with RSA.

- Solution 1a: work on $\mathbb Z$ and use LISS, not compatible with PVP.
- Solution 1b: multiply by N! so we are in \mathbb{Z} (compatible with PVP?)
- Solution 2: use previous Vandermonde Sharing:
 - Active security with ZKPs or with <u>Secure Randomness</u>



_		

# Rounds		
Signing Complexity		
Share size		

	Shamir		
_	Cyclic		
# Rounds	2T + 1		
Signing Complexity	O(N λ²)		
Share size	O(1)		

	Shamir	Replicated	
	Cyclic	Non-Abelian	
# Rounds	2T + 1	$2\binom{N}{T-1} + 1$	
Signing Complexity	O(N λ²)	$O\left(\binom{N}{T-1}\lambda\right)$	
Share size	O(1)	$O\left(\binom{N}{T-1}\lambda\right)$	

	Shamir	Replicated	Vandermonde	
_	Cyclic	Non-Abelian	Non-Abelian	
# Rounds	2T + 1	$2\binom{N}{T-1} + 1$	2T + 1	
Signing Complexity	O(N λ²)	$O\left(\binom{N}{T-1}\lambda\right)$	Ο(Τ λ)	
Share size	O(1)	$O\left(\binom{N}{T-1}\lambda\right)$	$O(NT^{\log N}\lambda)$	

	Shamir	Replicated	Vandermonde	Vandermonde
	Cyclic	Non-Abelian	Non-Abelian	Abelian
# Rounds	2T + 1	$2\binom{N}{T-1} + 1$	2T + 1	T + 2
Signing Complexity	O(N λ²)	$O\left(\binom{N}{T-1}\lambda\right)$	Ο(Τ λ)	Ο(Τ λ)
Share size	O(1)	$O\left(\binom{N}{T-1}\lambda\right)$	$O(NT^{\log N}\lambda)$	$O(NT^{\log N}\lambda)$

- (1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with sharing-friendly keys.
- (2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the Quantum Security of the Vectorization Problem with Shifted Inputs.
- (3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

- (1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with sharing-friendly keys.
- (2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the Quantum Security of the Vectorization Problem with Shifted Inputs.
- (3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

• Option 1: CSI-SharK (1) introduces PVP,

- (1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with sharing-friendly keys.
- (2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the Quantum Security of the Vectorization Problem with Shifted Inputs.
- (3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

• Option 1: CSI-SharK (1) introduces PVP,

• Requires an assumption that is quantumly broken (2).

- (1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with sharing-friendly keys.
- (2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the Quantum Security of the Vectorization Problem with Shifted Inputs.
- (3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

• Option 1: CSI-SharK (1) introduces PVP,

- Requires an assumption that is quantumly broken (2).
- Option 2: Sashimi (3) approach in the KeyGen,

- (1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with sharing-friendly keys.
- (2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the Quantum Security of the Vectorization Problem with Shifted Inputs.
- (3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

• Option 1: CSI-SharK (1) introduces PVP,

- Requires an assumption that is quantumly broken (2).
- Option 2: Sashimi (3) approach in the KeyGen,
 - -Working, but the number of iterations is $\binom{N}{T-1}$,

- (1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with sharing-friendly keys.
- (2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the Quantum Security of the Vectorization Problem with Shifted Inputs.
- (3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

• Option 1: CSI-SharK (1) introduces PVP,

- Requires an assumption that is quantumly broken (2).
- Option 2: Sashimi (3) approach in the KeyGen,
 - . Working, but the number of iterations is $\binom{N}{T-1}$,
 - Assumption not secure for the non-abelian case,

- (1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with sharing-friendly keys.
- (2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the Quantum Security of the Vectorization Problem with Shifted Inputs.
- (3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

• Option 1: CSI-SharK (1) introduces PVP,

- Requires an assumption that is quantumly broken (2).
- Option 2: Sashimi (3) approach in the KeyGen,
 - Working, but the number of iterations is $\binom{N}{T-1}$,
 - Assumption not secure for the non-abelian case,
 - **Option 2b:** Extractable ZKPoK with commitment at the start to the secret.

1) (1) 1) (1) 1) (1)

- (1) Atapoor S, Baghery K, Cozzo D, Pedersen R. CSI-SharK: CSI-FiSh with sharing-friendly keys.
- (2) Frixons P, Gilchrist V, Kutas P, Merz SP, Petit C. Another Look at the Quantum Security of the Vectorization Problem with Shifted Inputs.
- (3) Cozzo D, Smart NP. Sashimi: cutting up CSI-FiSh secret keys to produce an actively secure distributed signing protocol.

• Option 1: CSI-SharK (1) introduces PVP,

- Requires an assumption that is quantumly broken (2).
- Option 2: Sashimi (3) approach in the KeyGen,
 - Working, but the number of iterations is $\binom{N}{T-1}$,
 - Assumption not secure for the non-abelian case,
 - **Option 2b:** Extractable ZKPoK with commitment at the start to the secret.
- **Option 3** [OPEN]: can we have DKG for the Vandermonde Sharing?

Thanks

