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Introduction

Overview

▶ Kani’s research.

▶ Kani dedicated a significant portion of his research and numerous papers to the
study of (N,N)-isogenies (in different languages).

▶ The key ingredient for his approach is the use of a positive definite quadratic form,
so called the refined Humbert invariant.

▶ In 1994, Kani introduced the refined Humbert invariant qC , which is intrinsically
attached to a curve C of genus 2.

▶ Especially, over the past decade, he has significantly advanced our understanding of
the refined Humbert invariant and has addressed several interesting geometric
problems through the application of this theory.

▶ I followed a similar approach during my PhD research.

▶ In this talk, I will advertise this theory to use as a (perhaps theoretical) ingredient in
the isogeny-based crypto.

▶ E. Kırımlı, C. Martindale.

▶ E. Kırımlı, G. Korpal, On the heuristic security assumption of SQIsign.

▶ Unless stated otherwise, the results presented here are based on Kani’s work
(explicit, implicit or private communications with him).
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Introduction

Motivation

▶ Let C be a curve of genus 2 over a field k.

1. The refined Humbert invariant qC gives the information about the group Aut(C),
and determines it most of the time.

2. The refined Humbert invariant qC detects whether JC is (n, n)-split or not.

3. The refined Humbert invariant qC gives the number of equivalence classes of the
elliptic subcovers of degree n of C .

4. Given genus 2 curves C and C ′ (where JC ≃ E × E ′, for CM elliptic curves E and
E ′), the refined Humbert invariants qC and qC ′ detects whether C and C ′ are
isomorphic or not (theoretically at least!).

▶ By using (1)-(3), I’ll reprove (and generalize) a property of the superspecial isogeny
graph that was proved by Castryck, Decru, Smith (2020), and also by Katsura and
Takashima (2020).
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The main ingredient

The refined Humbert invariant

▶ Let K be an algebraically closed field.

▶ Let A be an abelian surface over K , and assume that A has a principal polarization
θ ∈ NS(A) = Div(A)/ ≡, where ≡ denotes numerical equivalence.

▶ Call (A, θ) as a principally polarized abelian surface.
▶ If A ≃ E1 × E2, then

D : Z⊕ Z⊕ Hom (E1,E2)
∼−→ NS(A).

▶ D(a, b, h) is a principal polarization ⇔ a > 0 and ab − deg(h) = 1, where deg
denotes the degree map on Hom(E1,E2).

▶ For two divisors D1 = D(a, b, f ) and D2 = D(a′, b′, f ′) in NS(A), the intersection
number of the divisors is given by

(D1.D2) = ab′ + a′b − βd(f , f
′),

where βd(f , f
′) = deg(f + f ′)− deg(f )− deg(f ′) is the bilinear form.

Definition 2.1.

The refined Humbert invariant of a principally polarized abelian surface (A, θ) is the
positive definite quadratic form q(A,θ) on NS(A)/Zθ defined by

q(A,θ)(D) = (D.θ)2 − 2(D.D), for D ∈ NS(A, θ).
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The main ingredient

Examples

▶ θ := D(1, 1, 0) is a product principal polarization on A.

In this case, q(A,θ) is
equivalent to x2 + 4deg.

▶ If there is an isogeny h ∈ Hom(E1,E2) such that deg(h) ≡ 3 mod 4, then
D(2, (1 + deg(h))/2, h) is a (non-product) principal polarization on A.

▶ Kani’s irreducibility criterion:

q(A,θ) = 1 has a solution ⇔ θ is a product principal polarization.

▶ If (A, θ) = (JC , θC ), for some curve C of genus 2, qC := q(JC ,θC ).
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Applications

Automorphism groups

▶ Let C be a curve of genus 2 over K .

▶ Let ι(Aut(C)) be the number of involutions of the group Aut(C), and
Rn(qC ) = {v : v is primitive and qC (v) = n}.

▶ ι(Aut(C))− 1 = |R4(qC )|.
▶ The quantity R4(qC ) completely determines Aut(C) when C is not superspecial.

▶ In 2023, I classified genus 2 curves C with JC ∼ E × E , where E is an ordinary CM
elliptic curve, according to Aut(C) using the refined Humbert invariant.

▶ Example: Let C : y 2 = x6 − 1.

▶ qC (x , y , z) = 4x2 + 4y 2 + 4z2 + 4yz + 4xz + 4xy and |R4(qC )| = 12.

▶ Aut(C) ≃ GL2(3).
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Applications

Elliptic subcovers

▶ Let k be any field. (Promise: I’ll define qC for any field).

▶ An (minimal) elliptic subcover of C is a finite morphism f : C → E , where E is an
elliptic curve E/k which does not factor over a non-trivial isogeny of E .

▶ If f : C → E and f ′ : C → E ′ are two elliptic subcovers and if there is an
isomorphism ϕ : E

∼→ E ′ such that f ′ = ϕ ◦ f , then f ′ and f are equivalent.

▶ Let En(C) be the set of equivalence classes of elliptic subcovers of degree n of C .

▶ By Kani (1994 and 2018), there is a bijection (by the rule f 7→ f ∗JE +ZθC ) between

En(C)
∼→ Rn2(qC )

▶ The genus 2 curve C/k has an elliptic subcover of degree n ⇔ qC → n2.
▶ JC is (n, n)-split ⇔ qC → n2.
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Applications

The superspecial isogeny graph

▶ For each prime p, a directed multigraph Gp(ℓ), where ℓ is a prime different from p, is
defined as follows:

▶ The vertices of Gp(ℓ) represent the isomorphism classes of superspecial principally
polarized abelian surfaces (s.p.p.a.s) over Fp and the edges of the graph are the
(ℓ, ℓ)-isogenious up to isomorphism.

▶ Recall: if (A1, λ1) and (A2, λ2) are s.p.p.a.s overFp, and if ϕ : A1 → A2 is an isogeny
with ϕ̂λ2ϕ = [ℓ]λ1 such that Ker ϕ ⩽ A1[ℓ] is maximally isotropic with respect to the
ℓ-Weil pairing, we say ϕ is (ℓ, ℓ)−isogeny.

▶ Let split
ℓ
(JC ) be the set of isomorphism classes of split (decomposed)

(ℓ, ℓ)-isogenies from JC to a superspecial abelian surface with a product principal
polarization.

▶ By Castryck, Decru, Smith (2020), |split
2
(JC )| ≤ 6.

▶ Katsura and Takashita (2020) calculate |split
2
(JC )| in each case in terms of

Aut(C)/⟨σC ⟩, where σC is the hyperelliptic involution.

▶ Let us reprove these results in the more general setting by using the theory of the
refined Humbert invariant.
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Applications

Reprove

▶ Recall that elliptic subcovers occur in pairs.

▶ If f : C → E is an elliptic subcover of degree ℓ, then there is a “complementary”
elliptic subcover f ′ : C → E ′ of degree ℓ.

▶ By using f and f ′, we can create an (ℓ, ℓ)-isogeny

φ : JC → E × E ′, i.e., φ ∈ split
ℓ
(JC ).

▶ Every split (ℓ, ℓ)-isogeny arises from an elliptic subcover of degree ℓ.

▶ Observe that the size |Eℓ(C)| is a double of |split
ℓ
(JC )|.

▶ Remember: En(C)
∼→ Rn2(qC ).

▶ 2|split
ℓ
(JC )| = |Eℓ(C)| = |Rℓ2(qC )| ⇒ 2|split

ℓ
(JC )| = |Rℓ2(qC )|.

▶ In particular, when ℓ = 2,

2|split
2
(JC )| = |R4(qC )| = |ι(C)| − 1.

▶ |split
2
(JC )| is equal to the half of the number of elliptic involutions of Aut(C).
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Applications

A generalization of the refined Humbert invariant

▶ Let (A, λ) be a principally polarized abelian surface over any field k.

▶ Let Endλ(A) :=
{
α ∈ End(A) : λ−1α̂λ = α

}
, and put Eλ(A) := Endλ(A)/Z1A.

Definition 3.1.

The refined Humbert invariant of a principally polarized abelian surface (A, λ)/k is the
positive definite quadratic form q(A,λ) on Eλ(A) defined by

q(A,λ)(α) = Trr (α
2)− 1

4
Trr (α)

2, for α ∈ Eλ(A),

where Trr is the rational trace.

▶ This is a generalization of the refined Humbert invariant defined in terms of the
intersections numbers.

▶ This was suggested by Kani in his article, and I provided a proof in my thesis.

▶ This definition is suitable to generalize the refined Humbert invariant for any
principally polarized abelian variety of dimension g over a field k.
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