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Outline

>

>

KLPT in dimension 2 (joint work with Castryck, Decru,
Laval, Petit and Ti) and consequences

Orientations and Shimura class group actions (ongoing
work with Castryck, Dina and Lorenzon) if time permits
(but probably won't)

Talk will focus mostly on the algebraic side and will
present recent work, ongoing work and open problems

Biquaternion algebra: tensor product of two quaternion
algebras

Over Q a biquaternion algebra is either Ms(Q) or My(B)
where B is a quaternion algebra

Many slides are "bonus slides” and are here just for
completeness (i.e., don't get scared by the 31 slides)
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Deuring correspondence

» Supersingular elliptic curves <+ Maximal orders in B,
(this is usually a 2-1 correspondence)

» [sogenies <> connecting ideals
» Degree of an isogeny <> Norm of an ideal

» Everything starts here with understanding the structure of
Hom(Ey, E;) which is a 4-dimensional Euclidean lattice of
determinant p?
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Kohel-Lauter-Petit-Tignol

» The Deuring correspondence implies that that every
algorithmic problem on the elliptic curve side has a
quaternion counterpart

» Isogeny pathfinding problem: Given two supersingular
elliptic curves find an isogeny of degree 2% between them

» Quaternion pathfinding problem: Given two maximal
orders find a connecting ideal of norm 2% between them

» KLPT2014: Quaternion pathfinding problem can be
solved in polynomial time

» Many crytpographic applications but in particular it
means that given a maximal order one can compute a
corresponding supersingular elliptic curve
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Brief sketch of KLPT

» Computing any connecting ideal is easy, finding a smooth
norm one is the hard part

» Equivalent ideal: / is equivalent to J if J = I3 for some
B € Bpo

» One computes one ideal / of norm N and then tries to
find an equivalent smooth norm one < finding an
element z € [ such that N(z) = NI”

» Ideal / can be generated by o, N. The idea is to first solve
the problem modulo N and then try to lift the lift the
solution (this is called Strong Approximation) to an
element of norm [

5/31



Dimension 2

v

v

What about dimension two Abelian varieties?

The natural analogue of supersingular curves is going to
be superspecial Abelian surfaces which are isomorphic to
the product of two supersingular elliptic curves

Problem 1: Only 1 superspecial surface up to isomorphism

Solution: You have to view surfaces together with a
principal polarization

How does this translate to the algebra side?
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Dimension 2, the algebra side

>

>

>

Endomorphism rings of superspecial surfaces are maximal
orders in My(B, )

Problem 1: There is only one maximal order up to
isomorphism

Solution: You have to incorporate principal polarizations
Ibukiyama, Katsura, Oort: Since every superspecial
surface comes from a different principal polarization of

E x E, one can associate a 2 x 2 matrix to every surface
Fix E2 together with the product polarization o and then
associate a different principal polarization o; the map
o1 0o which is an endomorphism of E2.
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Dimension 2, the algebra side Il

» This matrix is going to be quite special and actually of

the following form:
s r
rt

where End(E) = O, r € O and s, t > 0 are integers.

» This comes from the fact that M,(O) has the conjugate
transpose as a totally positive involution and the above
matrix will be symmetric with respect to that involution

» To get a proper correspondence we need an equivalence
relation as polarizations can be composed with
automorphisms

» Matrices g1 and g» are equivalent if there exists
u € GLy(O) such that g = u*gyu

» How do you bring isogenies into the picture?
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Algebraic polarized isogenies

» Polarized isogenies between gy, g> will correspond to
matrices 7 € M(O) such that v*g>y = Ngy

Problem
Given two matrices g1, g» find v € Mp(O) such that
v&y =2a

» Main result: There exists a polynomial-time algorithm for
the above problem with 2% < p?®

» Note that matrices g could apriori have big coefficients
yet the output length of our algorithm only depends on p
and not the coefficients of the g;
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Algebraic pathfinding |

> Let u= (i Z) € My(0). Let
N(u) = N(a)N(d) + N(b)N(c) — Tr(abdc)

» AN (u) is actually the reduced norm of u (reduced norm is
multiplicative!)

> u TN (u) € My(O)

Lemma

Assume that §*g10 = Nu*gou where N € Z*, u, 6 € My(O).
Then there exists v € My(O) such that v*g1y = NN (u)?g>.

» This generalizes the equivalence relation and provides
more flexibility
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Algebraic pathfinding Il

Lemma

Let g1 = <g r;) and g» = (g r\f) such that

Du — N(r) = Dv — N(r,) where D, u,v € Z and r, r; € O.
Then there exists v € My(O) such that

vy = D’g

Proof.

Take v = (g £ B rl) O
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Algebraic pathfinding IlI

v

Goal: find uy, u; such that the top left corner of uigiuy is
the same as the top left corner of uigru, and is a power
of 2

Problem 1: you have to ensure that N (u;) = N (u,) = 2%

You also need bounds on the powers of 2 that do not
depend on g; and g&»

Note that this reduces the pathfinding problem to a
transformation problem

What does the top left corner look like after conjugation
with u?

12/31



Algebraic pathfinding IV

a b
> Ifu—(c d) andg-(

of u*gu is

=~ 0

r
t)’ then the top left corner

s’ :=s-N(a)+ t- N(c)+ Tr(cra)

v

Observation 1: This does not depend on b, d!

» Observation 2: This a quadratic form in 8 variables, or
one can also look at it as O? together with a quadratic
module structure Q(a, c)

» Interesting fact: The determinant of this quadratic form
is p* (if st — N(r) = 1, in general it is p*(st — N(r))*) so
in particular it does not depend on s, t, r! Furthermore,
the form is positive definite.
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Algebraic pathfinding V

» Solving Q(a,c) = A where A € Z* can be done
efficiently assuming some technical conditions and
provided A is big enough

» Problem: Bound will depend on s, t

» Solution: Run LLL and find ug such that the top left
corner of uggug is smaller than /p

» This will only ensure that s is small but using one more
step one get every coefficient of the new g to be bounded

» What remains? At every step we only work with a, ¢ and
now we have to ensure that we can find a suitable b, d
such that A/ (u) is a fixed power of 2 whose size is
bounded in terms of p
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Algebraic pathfinding VI

» Controlling the reduced norm means that given a, c we
need to find b, d such that
N(a)N(d) + N(b)N(c) — Tr(abdc) is a fixed power of 2.
» Assume that N(a) and N(c) are coprime and look at the
quadratic form

Q(x,y) = N(a)N(y) + N(x)N(c) — Tr(3xyc)

» Instead of starting to write down Diophantine equations
we stop and think about what this is algebraically

» 02 can be viewed with Q as a quadratic right O-module.
The submodule M; = (a, ¢)O is going to be the radical,
i.e a submodule whose elements are orthogonal to
everyone

» Goal: Try to find a right submodule M, such that
Ml @ M2 - 02
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Algebraic pathfinding VII

v

The tactic for finding M, is going to be to find a vector
w that is B, w-independent from (a, ¢) and look for
M, = wB, o, N O,

For every such choice M, is a right O-module whose
intersection with My is trivial, however there is only one
choice to ensure that M; and M, generate O?

Let «, 8 be such that aN(a) + SN(c) =1

w = (BN(c)a, —aN(a)c) is going to be an appropriate
choice (it is enough to show that together with (a, ¢)
they generate (1,0) and (0,1))
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Algebraic pathfinding VIII

>

>

| 4

What is M,? Use the duck method (if it quacks like a
duck, waddles like a duck, then it has to be a duck)!
M, is going to be an invertible right O-module (i.e.,
locally free of rank 1)

It has two elements of coprime norm , namely
(BN(c), —aca), (Bac, —aN(a)) € M, which actually
generate it

It has to be a Hom(E, E;)

Actually one has the following formula:

Q((BN(c), —aca)o; + (Bac, —alN(a))oy) =
1/N(c)N(N(c)oy + acos).

This formula actually gives a module isomorphism
between M, and the right ideal generated by N(c) and ac
which is a N(c) homothethy between quadratic modules.
Why do we care about this?
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Algebraic pathfinding IX

» The above formula tells me that if | find an element of
norm N(c)N in the ideal generated by N(c) and ac (an
ideal of norm N(c)), then I find an element of norm N in
M,

» Hence | onleed need to find an element of norm N(c)2*

in the aforementioned ideal. But how do | do that? Use
1-dim KLPT!

» Since we use O as the nicest maximal order possible
KLPT will give as a power of 2 smaller than p3

» The terrible bound comes from the reduction step and
solving the previous norm equation
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Potential improvements

» Let's get back to the quadratic form
s-N(a)+t- N(c)+ Tr(cra)

» This is again O? with a quadratic module structure

» Would be great to find an equivalent matrix where s, t are
small (right now we move out of the equivalence class)

» Even nicer would be to solve
s-N(a)+ t- N(c)+ Tr(cra) = I¥

directly where the bound does not depend on s, t
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Applications

>

>

Efficient endomorphism ring to surface translation (2-dim
ideal to isogeny algorithm)

Breaking 2-dimensional generalizations of the CGL hash
function without trusted setup

This break involves an isogeny to matrix algorithm which

requires solving solving a principal ideal problem in left
ideals of M,(O)

For a chain of (/,/)-isogenies this can be avoided by using
a polynomial-time precomputation computing v matrices
for every possible rank 2 kernel (note that in dimension 2,
every surface is just E2 with a different principal
polarization)

Alternatively one can also solve it using algorithms for the
principal ideal problem
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Speculations on 2-dimensional SQlsign

» KLPT? naturally avoids going through a special surface
(conjecturally) so SQIsign can be built from it but
problems arise

» Paths are too long, so it is not yet clear how to make it
practical (very interesting open problem!)

» 7K knowledge assumption needs to be studied
» What about generalizations of SQIsignHD?
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Speculations on 2-dimensional SQlsign

>

>

>

Non-smooth degree matrices can be returned which are
much smaller but they go through a special surface

In theory a (reduced) degree = p isogeny should be
possible but finding it is not obvious

Polarized isogenies do not form a lattice, so one can't find
the shortest polarized isogeny with lattice reduction

Interesting to pursue this direction as well as
endomorphism ring computation in dimension 2 has O(p)
complexity (by recent survey from Anni, Bisson, Garcia,
lezzi, Wesolowski citing Costello-Smith algorithm)
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Alternative description of IKO

» |IKO paradigm does not seem like the natural
generalization of the Deuring correspondence

» One way is to look at totally positive involutions on
M,(O)

» Another more natural way is to look at maximal orders
together with a totally positive involution (here isogenies
will correspond to certain kind of conjugations)

» One can algorithmically navigate between them using the
principal ideal problem
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Endomorphism ring problems

vvyyvyy

v

Given a surface find a basis of the endomorphism ring
Given a surface find the corresponding g matrix
Algorithmically equivalent:

one finds an isomorphism between the endomorphism
algebra and My(B, )

Explicit conjugation to M,(O) using the principal ideal
problem

The g matrix can be read of from the Rosati involution
using linear algebra
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Group actions

\4

What other things are posisble with biquaternions?

» One can generalize class group actions to dimension 2 but
one has to account for polarizations

» One can view every maximal order as M,(O) (where
End(E) = O) together with the Rosati involution given
by o(x) =g 'x"g

» Instead of the class group one can use the Shimura class
group of CM orders
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Orientations

» Shimura class group actions are in characteristic 0 and
they generalize easily to ordinary abelian surfaces. What
can we do with superspecial surfaces?

» Orientations are NOT just an embedding of a CM order
in the endomorphism ring

» Take the endomorphism ring together with the involution.
An orientation is a CM order in the endomorphism ring
where the involution ¢ acts as complex conjugation

» Simply put: one has Z[a, b] as a subring where a is real
and o(a) = a and ab = ba
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Ongoing work

» \We can create orientations and show that these group
actions are free

» Orbits are very interesting and depend on something
called CM types which you don't really see in postive
characteristic

» One can efficiently compute them a la SCALLOP-HD

» Many open problems still arise
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Conclusion

» Biquaternion cryptography poses many open questions

» Does everything we know from the quaternion world
generalize to higher dimensions?

» Will there be applications that will outperform
1-dimensional counterparts (e.g., a recent 3-dimensional
hash function significantly outperforms CGL)
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Orientations Il

\4

Find a symmetric element a

Compute the centralizer of a in My(B, ) which will be
the quaternion algebra Q(a) ® B, by the double
centralizer theorem

If one intersects it with the original maximal order, one
can prove that o will act as quaternion conjugation on
this quaternion algebra (o will be a standard involution)

Just take a quadratic order
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Orientations IlI

» Through lifting to characteristic 0, this will provide a free
and transitive group action

» One still has to translate the orientation

» This can be done through interpolation data (like
SCALLOP-HD)

» Drawback: one needs 8-dimensional isogenies
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Orientations IlI

» Gives rise to an order embedding problem which can be
solved in the smallish cases using lattice reduction details
on the board

» Frobenius is not great as it does not generate a CM order
almost always. There is a group action of the class group
of Z[+/—p] which still provides interesting questions

» Several open questions in terms of security and efficiency
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