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Péter Kutas

30th April 2025

1/31



Outline

▶ KLPT in dimension 2 (joint work with Castryck, Decru,
Laval, Petit and Ti) and consequences

▶ Orientations and Shimura class group actions (ongoing
work with Castryck, Dina and Lorenzon) if time permits
(but probably won’t)

▶ Talk will focus mostly on the algebraic side and will
present recent work, ongoing work and open problems

▶ Biquaternion algebra: tensor product of two quaternion
algebras

▶ Over Q a biquaternion algebra is either M4(Q) or M2(B)
where B is a quaternion algebra

▶ Many slides are ”bonus slides” and are here just for
completeness (i.e., don’t get scared by the 31 slides)
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Deuring correspondence

▶ Supersingular elliptic curves ↔ Maximal orders in Bp,∞
(this is usually a 2-1 correspondence)

▶ Isogenies ↔ connecting ideals

▶ Degree of an isogeny ↔ Norm of an ideal

▶ Everything starts here with understanding the structure of
Hom(E1,E2) which is a 4-dimensional Euclidean lattice of
determinant p2

3/31



Kohel-Lauter-Petit-Tignol

▶ The Deuring correspondence implies that that every
algorithmic problem on the elliptic curve side has a
quaternion counterpart

▶ Isogeny pathfinding problem: Given two supersingular
elliptic curves find an isogeny of degree 2k between them

▶ Quaternion pathfinding problem: Given two maximal
orders find a connecting ideal of norm 2k between them

▶ KLPT2014: Quaternion pathfinding problem can be
solved in polynomial time

▶ Many crytpographic applications but in particular it
means that given a maximal order one can compute a
corresponding supersingular elliptic curve
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Brief sketch of KLPT

▶ Computing any connecting ideal is easy, finding a smooth
norm one is the hard part

▶ Equivalent ideal: I is equivalent to J if J = Iβ for some
β ∈ Bp,∞

▶ One computes one ideal I of norm N and then tries to
find an equivalent smooth norm one ↔ finding an
element z ∈ I such that N(z) = Nln

▶ Ideal I can be generated by σ,N . The idea is to first solve
the problem modulo N and then try to lift the lift the
solution (this is called Strong Approximation) to an
element of norm lk
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Dimension 2

▶ What about dimension two Abelian varieties?

▶ The natural analogue of supersingular curves is going to
be superspecial Abelian surfaces which are isomorphic to
the product of two supersingular elliptic curves

▶ Problem 1: Only 1 superspecial surface up to isomorphism

▶ Solution: You have to view surfaces together with a
principal polarization

▶ How does this translate to the algebra side?
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Dimension 2, the algebra side

▶ Endomorphism rings of superspecial surfaces are maximal
orders in M2(Bp,∞)

▶ Problem 1: There is only one maximal order up to
isomorphism

▶ Solution: You have to incorporate principal polarizations

▶ Ibukiyama, Katsura, Oort: Since every superspecial
surface comes from a different principal polarization of
E × E , one can associate a 2× 2 matrix to every surface

▶ Fix E 2 together with the product polarization σ0 and then
associate a different principal polarization σ1 the map
σ−1
1 σ0 which is an endomorphism of E 2.
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Dimension 2, the algebra side II
▶ This matrix is going to be quite special and actually of

the following form: (
s r
r̄ t

)
where End(E ) = O, r ∈ O and s, t > 0 are integers.

▶ This comes from the fact that M2(O) has the conjugate
transpose as a totally positive involution and the above
matrix will be symmetric with respect to that involution

▶ To get a proper correspondence we need an equivalence
relation as polarizations can be composed with
automorphisms

▶ Matrices g1 and g2 are equivalent if there exists
u ∈ GL2(O) such that g2 = u∗g1u

▶ How do you bring isogenies into the picture?
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Algebraic polarized isogenies

▶ Polarized isogenies between g1, g2 will correspond to
matrices γ ∈ M2(O) such that γ∗g2γ = Ng1

Problem
Given two matrices g1, g2 find γ ∈ M2(O) such that
γ∗g2γ = 2kg1

▶ Main result: There exists a polynomial-time algorithm for
the above problem with 2k < p25

▶ Note that matrices g could apriori have big coefficients
yet the output length of our algorithm only depends on p
and not the coefficients of the gi
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Algebraic pathfinding I

▶ Let u =

(
a b
c d

)
∈ M2(O). Let

N (u) = N(a)N(d) + N(b)N(c)− Tr(ābd̄c)

▶ N (u) is actually the reduced norm of u (reduced norm is
multiplicative!)

▶ u−1N (u) ∈ M2(O)

Lemma
Assume that δ∗g1δ = Nu∗g2u where N ∈ Z+, u, δ ∈ M2(O).
Then there exists γ ∈ M2(O) such that γ∗g1γ = NN (u)2g2.

▶ This generalizes the equivalence relation and provides
more flexibility
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Algebraic pathfinding II

Lemma

Let g1 =

(
D r1
r̄1 u

)
and g2 =

(
D r2
r̄2 v

)
such that

Du − N(r1) = Dv − N(r2) where D, u, v ∈ Z and r1, r2 ∈ O.
Then there exists γ ∈ M2(O) such that

γ∗g1γ = D2g2

Proof.

Take γ =

(
D r2 − r1
0 D

)
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Algebraic pathfinding III

▶ Goal: find u1, u2 such that the top left corner of u∗
1g1u1 is

the same as the top left corner of u∗
2g2u2 and is a power

of 2

▶ Problem 1: you have to ensure that N (u1) = N (u2) = 2k

▶ You also need bounds on the powers of 2 that do not
depend on g1 and g2

▶ Note that this reduces the pathfinding problem to a
transformation problem

▶ What does the top left corner look like after conjugation
with u?
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Algebraic pathfinding IV

▶ If u =

(
a b
c d

)
and g =

(
s r
r̄ t

)
, then the top left corner

of u∗gu is

s ′ := s · N(a) + t · N(c) + Tr(c̄ r̄ a)

▶ Observation 1: This does not depend on b, d !

▶ Observation 2: This a quadratic form in 8 variables, or
one can also look at it as O2 together with a quadratic
module structure Q(a, c)

▶ Interesting fact: The determinant of this quadratic form
is p4 (if st − N(r) = 1, in general it is p4(st − N(r))4) so
in particular it does not depend on s, t, r ! Furthermore,
the form is positive definite.
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Algebraic pathfinding V

▶ Solving Q(a, c) = A where A ∈ Z+ can be done
efficiently assuming some technical conditions and
provided A is big enough

▶ Problem: Bound will depend on s, t

▶ Solution: Run LLL and find u0 such that the top left
corner of u∗

0gu0 is smaller than
√
p

▶ This will only ensure that s is small but using one more
step one get every coefficient of the new g to be bounded

▶ What remains? At every step we only work with a, c and
now we have to ensure that we can find a suitable b, d
such that N (u) is a fixed power of 2 whose size is
bounded in terms of p
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Algebraic pathfinding VI
▶ Controlling the reduced norm means that given a, c we

need to find b, d such that
N(a)N(d) + N(b)N(c)− Tr(ābd̄c) is a fixed power of 2.

▶ Assume that N(a) and N(c) are coprime and look at the
quadratic form

Q(x , y) = N(a)N(y) + N(x)N(c)− Tr(āx ȳ c)

▶ Instead of starting to write down Diophantine equations
we stop and think about what this is algebraically

▶ O2 can be viewed with Q as a quadratic right O-module.
The submodule M1 = (a, c)O is going to be the radical,
i.e a submodule whose elements are orthogonal to
everyone

▶ Goal: Try to find a right submodule M2 such that
M1 ⊕M2 = O2
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Algebraic pathfinding VII

▶ The tactic for finding M2 is going to be to find a vector
w that is Bp,∞-independent from (a, c) and look for
M2 = wBp,∞ ∩ O2.

▶ For every such choice M2 is a right O-module whose
intersection with M1 is trivial, however there is only one
choice to ensure that M1 and M2 generate O2

▶ Let α, β be such that αN(a) + βN(c) = 1

▶ w = (βN(c)a,−αN(a)c) is going to be an appropriate
choice (it is enough to show that together with (a, c)
they generate (1, 0) and (0, 1))
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Algebraic pathfinding VIII
▶ What is M2? Use the duck method (if it quacks like a

duck, waddles like a duck, then it has to be a duck)!
▶ M2 is going to be an invertible right O-module (i.e.,

locally free of rank 1)
▶ It has two elements of coprime norm , namely

(βN(c),−αcā), (βac̄ ,−αN(a)) ∈ M2 which actually
generate it

▶ It has to be a Hom(E ,E1)
▶ Actually one has the following formula:

Q((βN(c),−αcā)o1 + (βac̄ ,−αN(a))o2) =

1/N(c)N(N(c)o1 + ac̄o2).

▶ This formula actually gives a module isomorphism
between M2 and the right ideal generated by N(c) and ac̄
which is a N(c) homothethy between quadratic modules.
Why do we care about this?
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Algebraic pathfinding IX

▶ The above formula tells me that if I find an element of
norm N(c)N in the ideal generated by N(c) and ac̄ (an
ideal of norm N(c)), then I find an element of norm N in
M2

▶ Hence I onleed need to find an element of norm N(c)2k

in the aforementioned ideal. But how do I do that? Use
1-dim KLPT!

▶ Since we use O as the nicest maximal order possible
KLPT will give as a power of 2 smaller than p3

▶ The terrible bound comes from the reduction step and
solving the previous norm equation
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Potential improvements

▶ Let’s get back to the quadratic form

s · N(a) + t · N(c) + Tr(c̄ r̄ a)

▶ This is again O2 with a quadratic module structure

▶ Would be great to find an equivalent matrix where s, t are
small (right now we move out of the equivalence class)

▶ Even nicer would be to solve

s · N(a) + t · N(c) + Tr(c̄ r̄ a) = lk

directly where the bound does not depend on s, t
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Applications

▶ Efficient endomorphism ring to surface translation (2-dim
ideal to isogeny algorithm)

▶ Breaking 2-dimensional generalizations of the CGL hash
function without trusted setup

▶ This break involves an isogeny to matrix algorithm which
requires solving solving a principal ideal problem in left
ideals of M2(O)

▶ For a chain of (l , l)-isogenies this can be avoided by using
a polynomial-time precomputation computing γ matrices
for every possible rank 2 kernel (note that in dimension 2,
every surface is just E 2 with a different principal
polarization)

▶ Alternatively one can also solve it using algorithms for the
principal ideal problem
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Speculations on 2-dimensional SQIsign

▶ KLPT2 naturally avoids going through a special surface
(conjecturally) so SQIsign can be built from it but
problems arise

▶ Paths are too long, so it is not yet clear how to make it
practical (very interesting open problem!)

▶ ZK knowledge assumption needs to be studied

▶ What about generalizations of SQIsignHD?

21/31



Speculations on 2-dimensional SQIsign

▶ Non-smooth degree matrices can be returned which are
much smaller but they go through a special surface

▶ In theory a (reduced) degree ≈ p isogeny should be
possible but finding it is not obvious

▶ Polarized isogenies do not form a lattice, so one can’t find
the shortest polarized isogeny with lattice reduction

▶ Interesting to pursue this direction as well as
endomorphism ring computation in dimension 2 has O(p)
complexity (by recent survey from Anni, Bisson, Garcia,
Iezzi, Wesolowski citing Costello-Smith algorithm)
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Alternative description of IKO

▶ IKO paradigm does not seem like the natural
generalization of the Deuring correspondence

▶ One way is to look at totally positive involutions on
M2(O)

▶ Another more natural way is to look at maximal orders
together with a totally positive involution (here isogenies
will correspond to certain kind of conjugations)

▶ One can algorithmically navigate between them using the
principal ideal problem
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Endomorphism ring problems

▶ Given a surface find a basis of the endomorphism ring

▶ Given a surface find the corresponding g matrix

▶ Algorithmically equivalent:

▶ one finds an isomorphism between the endomorphism
algebra and M2(Bp,∞)

▶ Explicit conjugation to M2(O) using the principal ideal
problem

▶ The g matrix can be read of from the Rosati involution
using linear algebra
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Group actions

▶ What other things are posisble with biquaternions?

▶ One can generalize class group actions to dimension 2 but
one has to account for polarizations

▶ One can view every maximal order as M2(O) (where
End(E ) ∼= O) together with the Rosati involution given
by σ(x) = g−1xTg

▶ Instead of the class group one can use the Shimura class
group of CM orders
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Orientations

▶ Shimura class group actions are in characteristic 0 and
they generalize easily to ordinary abelian surfaces. What
can we do with superspecial surfaces?

▶ Orientations are NOT just an embedding of a CM order
in the endomorphism ring

▶ Take the endomorphism ring together with the involution.
An orientation is a CM order in the endomorphism ring
where the involution σ acts as complex conjugation

▶ Simply put: one has Z [a, b] as a subring where a is real
and σ(a) = a and ab = ba
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Ongoing work

▶ We can create orientations and show that these group
actions are free

▶ Orbits are very interesting and depend on something
called CM types which you don’t really see in postive
characteristic

▶ One can efficiently compute them á la SCALLOP-HD

▶ Many open problems still arise
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Conclusion

▶ Biquaternion cryptography poses many open questions

▶ Does everything we know from the quaternion world
generalize to higher dimensions?

▶ Will there be applications that will outperform
1-dimensional counterparts (e.g., a recent 3-dimensional
hash function significantly outperforms CGL)
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Orientations II

▶ Find a symmetric element a

▶ Compute the centralizer of a in M2(Bp,∞) which will be
the quaternion algebra Q(a)⊗ Bp,∞ by the double
centralizer theorem

▶ If one intersects it with the original maximal order, one
can prove that σ will act as quaternion conjugation on
this quaternion algebra (σ will be a standard involution)

▶ Just take a quadratic order
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Orientations III

▶ Through lifting to characteristic 0, this will provide a free
and transitive group action

▶ One still has to translate the orientation

▶ This can be done through interpolation data (like
SCALLOP-HD)

▶ Drawback: one needs 8-dimensional isogenies
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Orientations III

▶ Gives rise to an order embedding problem which can be
solved in the smallish cases using lattice reduction details
on the board

▶ Frobenius is not great as it does not generate a CM order
almost always. There is a group action of the class group
of Z[

√
−p] which still provides interesting questions

▶ Several open questions in terms of security and efficiency
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