A Montgomery ladder for isogenies

Marc Houben

Inria Bordeaux

SQIparty

30 April 2025

		Introduction	CSIDH	
CSIDH				
	Private	Pu	ıblic	Private
		Ì	E_0	
	Alice			Bob

Definition

Let $\mathcal{O} = \mathbb{Z}[\sigma]$ be an imaginary quadratic order. An \mathcal{O} -orientation is an embedding $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$.

Definition

Let $\mathcal{O} = \mathbb{Z}[\sigma]$ be an imaginary quadratic order. An \mathcal{O} -orientation is an embedding $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$.

Example

In CSIDH, we have E/\mathbb{F}_p and $\mathcal{O} = \mathbb{Z}[\pi]$, where $\pi = \operatorname{Frob}_p$.

Definition

Let $\mathcal{O} = \mathbb{Z}[\sigma]$ be an imaginary quadratic order. An \mathcal{O} -orientation is an embedding $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$.

Example

In CSIDH, we have E/\mathbb{F}_p and $\mathcal{O} = \mathbb{Z}[\pi]$, where $\pi = \operatorname{Frob}_p$.

Ideals $\mathfrak{a} \subseteq \mathcal{O}$ give rise to isogenies $\varphi_{\mathfrak{a}} : E \to \mathfrak{a} \cdot E$ of degree $N(\mathfrak{a})$,

Definition

Let $\mathcal{O} = \mathbb{Z}[\sigma]$ be an imaginary quadratic order. An \mathcal{O} -orientation is an embedding $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$.

Example

In CSIDH, we have
$$E/\mathbb{F}_p$$
 and $\mathcal{O} = \mathbb{Z}[\pi]$, where $\pi = \operatorname{Frob}_p$.

Ideals $\mathfrak{a} \subseteq \mathcal{O}$ give rise to isogenies $\varphi_{\mathfrak{a}}: E \to \mathfrak{a} \cdot E$ of degree $N(\mathfrak{a})$, s.t.

$$\ker \varphi_{\mathfrak{a}} = E[\mathfrak{a}] = \bigcap_{\alpha \in \mathfrak{a}} \ker \iota(\alpha).$$

Definition

Let $\mathcal{O} = \mathbb{Z}[\sigma]$ be an imaginary quadratic order. An \mathcal{O} -orientation is an embedding $\iota : \mathcal{O} \hookrightarrow \operatorname{End}(E)$.

Example

In CSIDH, we have
$$E/\mathbb{F}_p$$
 and $\mathcal{O} = \mathbb{Z}[\pi]$, where $\pi = \operatorname{Frob}_p$.

Ideals $\mathfrak{a} \subseteq \mathcal{O}$ give rise to isogenies $\varphi_{\mathfrak{a}}: E \to \mathfrak{a} \cdot E$ of degree $N(\mathfrak{a})$, s.t.

$$\ker \varphi_{\mathfrak{a}} = E[\mathfrak{a}] = \bigcap_{\alpha \in \mathfrak{a}} \ker \iota(\alpha).$$

Theorem

If the \mathcal{O} -orientation is primitive, this gives a free action

 $\operatorname{Cl}(\mathcal{O}) \subset \{(E,\iota)\}/\cong .$

Class group actions

Key exchange from a class group action

Key exchange from a class group action

(iii) SCALLOP & friends

Suppose E is supersingular (i.e. $\overline{\pi} = -\pi$) and $p + 1 = 4 \cdot \prod_{i=1}^{n} \ell_i$.

Suppose E is supersingular (i.e. $\overline{\pi} = -\pi$) and $p + 1 = 4 \cdot \prod_{i=1}^{n} \ell_i$. As \mathcal{O} -ideals

$$(\ell_i) = (\ell_i, \pi - 1)(\ell_i, \pi + 1) = \mathfrak{l}_i \overline{\mathfrak{l}_i}.$$

Suppose *E* is supersingular (i.e. $\overline{\pi} = -\pi$) and $p + 1 = 4 \cdot \prod_{i=1}^{n} \ell_i$. As \mathcal{O} -ideals

$$(\ell_i) = (\ell_i, \pi - 1)(\ell_i, \pi + 1) = \mathfrak{l}_i \overline{\mathfrak{l}_i}.$$

(Connected component of) the supersingular ℓ -isogeny graph over \mathbb{F}_p .

(Connected component of) a union of supersingular 3-, 5-, and 7-isogeny graphs over $\mathbb{F}_p.$

Marc Houben

A Montgomery ladder for isogenies

$$p = 4 \cdot \underbrace{(3 \cdot 5 \cdot \ldots \cdot 373)}_{73 \text{ consecutive primes}} \cdot 587 - 1 \approx 2^{511}.$$

$$p = 4 \cdot \underbrace{(3 \cdot 5 \cdot \ldots \cdot 373)}_{73 \text{ consecutive primes}} \cdot 587 - 1 \approx 2^{511}.$$

(i)
$$\mathsf{sk}_{\mathsf{A}} = (a_1, \dots, a_{74}) \in \{-5, \dots, 5\}^{74}; \ \mathsf{pk}_{\mathsf{A}} = E_A = \prod_i [\mathfrak{l}_i]^{a_i} E_0.$$

$$p = 4 \cdot \underbrace{(3 \cdot 5 \cdot \ldots \cdot 373)}_{73 \text{ consecutive primes}} \cdot 587 - 1 \approx 2^{511}.$$

(i)
$$\mathsf{sk}_{\mathsf{A}} = (a_1, \dots, a_{74}) \in \{-5, \dots, 5\}^{74}; \mathsf{pk}_{\mathsf{A}} = E_A = \prod_i [\mathfrak{l}_i]^{a_i} E_0.$$

(ii) $\mathsf{sk}_{\mathsf{B}} = (b_1, \dots, b_{74}) \in \{-5, \dots, 5\}^{74}; \mathsf{pk}_{\mathsf{B}} = E_B = \prod_i [\mathfrak{l}_i]^{b_i} E_0.$

$$p = 4 \cdot \underbrace{(3 \cdot 5 \cdot \ldots \cdot 373)}_{73 \text{ consecutive primes}} \cdot 587 - 1 \approx 2^{511}.$$

(i)
$$\mathsf{sk}_{\mathsf{A}} = (a_1, \dots, a_{74}) \in \{-5, \dots, 5\}^{74}; \mathsf{pk}_{\mathsf{A}} = E_A = \prod_i [\mathfrak{l}_i]^{a_i} E_0.$$

(ii) $\mathsf{sk}_{\mathsf{B}} = (b_1, \dots, b_{74}) \in \{-5, \dots, 5\}^{74}; \mathsf{pk}_{\mathsf{B}} = E_B = \prod_i [\mathfrak{l}_i]^{b_i} E_0.$
(iii) Alice computes $\prod_i [\mathfrak{l}_i]^{a_i} E_B = \prod_i [\mathfrak{l}_i]^{a_i+b_i} E_0.$

$$p = 4 \cdot \underbrace{(3 \cdot 5 \cdot \ldots \cdot 373)}_{73 \text{ consecutive primes}} \cdot 587 - 1 \approx 2^{511}.$$

(i)
$$\mathsf{sk}_{\mathsf{A}} = (a_1, \dots, a_{74}) \in \{-5, \dots, 5\}^{74}; \mathsf{pk}_{\mathsf{A}} = E_A = \prod_i [\mathfrak{l}_i]^{a_i} E_0.$$

(ii) $\mathsf{sk}_{\mathsf{B}} = (b_1, \dots, b_{74}) \in \{-5, \dots, 5\}^{74}; \mathsf{pk}_{\mathsf{B}} = E_B = \prod_i [\mathfrak{l}_i]^{b_i} E_0.$
(iii) Alice computes $\prod_i [\mathfrak{l}_i]^{a_i} E_B = \prod_i [\mathfrak{l}_i]^{a_i+b_i} E_0.$
(iv) Bob computes $\prod_i [\mathfrak{l}_i]^{b_i} E_A = \prod_i [\mathfrak{l}_i]^{a_i+b_i} E_0.$

As $\mathcal{O}=\mathbb{Z}[\pi]$ -ideals

$$(\ell_i) = (\ell_i, \pi - 1)(\ell_i, \pi + 1) = \mathfrak{l}_i \overline{\mathfrak{l}_i}.$$

As $\mathcal{O} = \mathbb{Z}[\pi]$ -ideals

$$(\ell_i) = (\ell_i, \pi - 1)(\ell_i, \pi + 1) = \mathfrak{l}_i \overline{\mathfrak{l}_i}.$$

$$E[\mathfrak{l}_i] = E[\ell_i, \pi - 1] = E(\mathbb{F}_p)[\ell_i]$$

As $\mathcal{O}=\mathbb{Z}[\pi]$ -ideals

$$(\ell_i) = (\ell_i, \pi - 1)(\ell_i, \pi + 1) = \mathfrak{l}_i \overline{\mathfrak{l}_i}.$$

$$E[\mathfrak{l}_i] = E[\ell_i, \pi - 1] = E(\mathbb{F}_p)[\ell_i]$$

Algorithm (OG CSIDH)

As $\mathcal{O}=\mathbb{Z}[\pi]$ -ideals

$$(\ell_i) = (\ell_i, \pi - 1)(\ell_i, \pi + 1) = \mathfrak{l}_i \overline{\mathfrak{l}_i}.$$

$$E[\mathfrak{l}_i] = E[\ell_i, \pi - 1] = E(\mathbb{F}_p)[\ell_i]$$

Algorithm (OG CSIDH)

(i) Sample a random point $R \in E(\mathbb{F}_p)$.

As $\mathcal{O}=\mathbb{Z}[\pi]$ -ideals

$$(\ell_i) = (\ell_i, \pi - 1)(\ell_i, \pi + 1) = \mathfrak{l}_i \overline{\mathfrak{l}_i}.$$

$$E[\mathfrak{l}_i] = E[\ell_i, \pi - 1] = E(\mathbb{F}_p)[\ell_i]$$

Algorithm (OG CSIDH)

- (i) Sample a random point $R \in E(\mathbb{F}_p)$.
- (ii) Compute $P = [\#E(\mathbb{F}_p)/\ell_i]Q$.
Computing the ℓ_i -isogenies

As $\mathcal{O} = \mathbb{Z}[\pi]$ -ideals

$$(\ell_i) = (\ell_i, \pi - 1)(\ell_i, \pi + 1) = \mathfrak{l}_i \overline{\mathfrak{l}_i}.$$

$$E[\mathfrak{l}_i] = E[\ell_i, \pi - 1] = E(\mathbb{F}_p)[\ell_i]$$

Algorithm (OG CSIDH)

- (i) Sample a random point $R \in E(\mathbb{F}_p)$.
- (ii) Compute $P = [\#E(\mathbb{F}_p)/\ell_i]Q$.
- (iii) If P has order ℓ_i , compute $\varphi: E \to E/\langle P \rangle \cong [\mathfrak{l}_i]E$.

Computing the ℓ_i -isogenies

As $\mathcal{O} = \mathbb{Z}[\pi]$ -ideals

$$(\ell_i) = (\ell_i, \pi - 1)(\ell_i, \pi + 1) = \mathfrak{l}_i \overline{\mathfrak{l}_i}.$$

$$E[\mathfrak{l}_i] = E[\ell_i, \pi - 1] = E(\mathbb{F}_p)[\ell_i]$$

Algorithm (OG CSIDH)

- (i) Sample a random point $R \in E(\mathbb{F}_p)$.
- (ii) Compute $P = [\#E(\mathbb{F}_p)/\ell_i]Q$.
- (iii) If P has order ℓ_i , compute $\varphi: E \to E/\langle P \rangle \cong [\mathfrak{l}_i]E$.

(i) Non-deterministic. :(

Computing the ℓ_i -isogenies

As $\mathcal{O} = \mathbb{Z}[\pi]$ -ideals

$$(\ell_i) = (\ell_i, \pi - 1)(\ell_i, \pi + 1) = \mathfrak{l}_i \overline{\mathfrak{l}_i}.$$

$$E[\mathfrak{l}_i] = E[\ell_i, \pi - 1] = E(\mathbb{F}_p)[\ell_i]$$

Algorithm (OG CSIDH)

- (i) Sample a random point $R \in E(\mathbb{F}_p)$.
- (ii) Compute $P = [\#E(\mathbb{F}_p)/\ell_i]Q$.
- (iii) If P has order ℓ_i , compute $\varphi: E \to E/\langle P \rangle \cong [\mathfrak{l}_i]E$.

(i) Non-deterministic. :(

(ii) Variable time. :((

- (i) Sample a random point $R \in E(\mathbb{F}_p)$.
- (ii) Compute $P = [\#E(\mathbb{F}_p)/\ell_i]Q$.
- (iii) If P has order ℓ_i , compute $\varphi: E \to E/\langle P \rangle \cong [\mathfrak{l}_i]E$.

(i) Sample a random point $R \in E(\mathbb{F}_p)$.

(ii) Compute
$$P = [\#E(\mathbb{F}_p)/\ell_i]Q$$
.

(iii) If P has order ℓ_i , compute $\varphi: E \to E/\langle P \rangle \cong [\mathfrak{l}_i]E$.

Observation

Can compute action of $(a_1, \ldots, a_n) \in \{0, 1\}^n$ from one point $P \in E(\mathbb{F}_p) = E[\pi - 1]$ of order $\prod_{i=1}^n \ell_i$.

(i) Sample a random point $R \in E(\mathbb{F}_p)$.

(ii) Compute
$$P = [\#E(\mathbb{F}_p)/\ell_i]Q$$
.

(iii) If P has order ℓ_i , compute $\varphi: E \to E/\langle P \rangle \cong [\mathfrak{l}_i]E$.

Observation

Can compute action of $(a_1, \ldots, a_n) \in \{0, 1\}^n$ from one point $P \in E(\mathbb{F}_p) = E[\pi - 1]$ of order $\prod_{i=1}^n \ell_i$.

Partial fix

Add $P_0 \in E_0[\pi - 1], Q_0 \in E_0[\pi + 1]$ to public parameters.

(i) Sample a random point $R \in E(\mathbb{F}_p)$.

(ii) Compute
$$P = [\#E(\mathbb{F}_p)/\ell_i]Q$$
.

(iii) If P has order ℓ_i , compute $\varphi: E \to E/\langle P \rangle \cong [\mathfrak{l}_i]E$.

Observation

Can compute action of $(a_1, \ldots, a_n) \in \{0, 1\}^n$ from one point $P \in E(\mathbb{F}_p) = E[\pi - 1]$ of order $\prod_{i=1}^n \ell_i$.

Partial fix

Add $P_0 \in E_0[\pi - 1], Q_0 \in E_0[\pi + 1]$ to public parameters.

(i) Restrictive key space.

(i) Sample a random point $R \in E(\mathbb{F}_p)$.

(ii) Compute
$$P = [\#E(\mathbb{F}_p)/\ell_i]Q$$
.

(iii) If P has order ℓ_i , compute $\varphi: E \to E/\langle P \rangle \cong [\mathfrak{l}_i]E$.

Observation

Can compute action of $(a_1, \ldots, a_n) \in \{0, 1\}^n$ from one point $P \in E(\mathbb{F}_p) = E[\pi - 1]$ of order $\prod_{i=1}^n \ell_i$.

Partial fix

Add $P_0 \in E_0[\pi - 1], Q_0 \in E_0[\pi + 1]$ to public parameters.

(i) Restrictive key space.

(ii) Still need to sample points on E_A and E_B .

We have $N(\pi - 1) = p + 1 = 4 \cdot \prod_{i=1}^{n} \ell_i$.

We have $N(\pi - 1) = p + 1 = 4 \cdot \prod_{i=1}^{n} \ell_i$.

$$(\pi - 1) = (4, \pi - 1) \cdot \prod_{i=1}^{n} (\ell_i, \pi - 1).$$

We have $N(\pi - 1) = p + 1 = 4 \cdot \prod_{i=1}^{n} \ell_i$.

$$(\pi - 1) = (4, \pi - 1) \cdot \prod_{i=1}^{n} (\ell_i, \pi - 1).$$

Assume $p = 8 \cdot \prod_{i=1}^{n} \ell_i - 1$.

Assume $p = 8 \cdot \prod_{i=1}^{n} \ell_i - 1$.

Assume
$$p = 8 \cdot \prod_{i=1}^{n} \ell_i - 1.$$
$$\left(\frac{\pi - 1}{2}\right) = \left(2, \frac{\pi - 1}{2}\right) \cdot \prod_{i=1}^{n} \left(\ell_i, \frac{\pi - 1}{2}\right)$$

Þ

Assume
$$p = 8 \cdot \prod_{i=1}^{n} \ell_i - 1$$
.
 $\left(\frac{\pi - 1}{2}\right) = \left(2, \frac{\pi - 1}{2}\right) \cdot \prod_{i=1}^{n} \left(\ell_i, \frac{\pi - 1}{2}\right) = \prod_{i=0}^{n} \left(\ell_i, \frac{\pi - 1}{2}\right)$

$$\mathbb{Z} \begin{bmatrix} \frac{\pi - 1}{2} \end{bmatrix}$$

$$\mathbb{Z} \begin{bmatrix} \pi \end{bmatrix}$$

Assume
$$p = 8 \cdot \prod_{i=1}^{n} \ell_i - 1$$
.

$$\left(\frac{\pi - 1}{2}\right) = \left(2, \frac{\pi - 1}{2}\right) \cdot \prod_{i=1}^{n} \left(\ell_i, \frac{\pi - 1}{2}\right) = \prod_{i=0}^{n} \left(\ell_i, \frac{\pi - 1}{2}\right) = \prod_{i=0}^{n} \mathfrak{l}_i.$$

$$\mathbb{Z} \begin{bmatrix} \frac{\pi - 1}{2} \end{bmatrix}$$

$$\mathbb{Z} \begin{bmatrix} \pi \end{bmatrix}$$

The trivial ideal class

Acting by the trivial ideal class

The action by the ideal class $(1, \ldots, 1)$.

Acting by the ideal class $(1, \ldots, 1)$.

$$\varphi^+: E \to E/\langle P \rangle \cong E$$
, where $E\left[\frac{\pi-1}{2}\right] = \langle P \rangle$.

Acting by the ideal class $(1, \ldots, 1)$.

$$\varphi^+: E \to E/\langle P \rangle \cong E$$
, where $E\left[\frac{\pi-1}{2}\right] = \langle P \rangle$.

Similarly

$$\varphi^-: E \to E/\langle Q \rangle \cong E, \quad \text{where} \quad E\left[\frac{\pi+1}{2}\right] = \langle Q \rangle.$$

Acting by the ideal class $(1, \ldots, 1)$.

$$\varphi^+: E \to E/\langle P \rangle \cong E$$
, where $E\left[\frac{\pi-1}{2}\right] = \langle P \rangle$.

Similarly

$$\varphi^-: E \to E/\langle Q \rangle \cong E, \quad \text{where} \quad E\left\lfloor rac{\pi+1}{2}
ight
floor = \langle Q
angle.$$

Acting by the ideal class $(0, 1, 1, 0, 1, 1, 1, 0, 1) \equiv (-1, 0, 0, -1, 0, 0, 0, -1, 0)$.

Acting by the ideal class $(0, 1, 1, 0, 1, 1, 1, 0, 1) \equiv (-1, 0, 0, -1, 0, 0, 0, -1, 0).$

$$\varphi^{+}: E \to E/\langle [2 \cdot 7 \cdot 29] P \rangle \cong E', \quad \text{where} \quad E\left[\frac{\pi - 1}{2}\right] = \langle P \rangle,$$

Acting by the ideal class $(0, 1, 1, 0, 1, 1, 1, 0, 1) \equiv (-1, 0, 0, -1, 0, 0, 0, -1, 0).$

$$\varphi^+: E \to E/\langle [2 \cdot 7 \cdot 29]P \rangle \cong E', \quad \text{where} \quad E\left[\frac{\pi-1}{2}\right] = \langle P \rangle,$$

and

$$\varphi^{-}: E \to E/\langle [3 \cdot 5 \cdot 17 \cdot 19 \cdot 23 \cdot 31]Q \rangle \cong E', \quad \text{where} \quad E\left[\frac{\pi+1}{2}\right] = \langle Q \rangle.$$
Marc Houben A Montgomery ladder for isogenies 30 April 2025 15/25

 $\mathsf{Magic}^{\mathsf{TM}}$

 $\varphi^{-}(P)$ generates $E'\left[\frac{\pi-1}{2}\right]$, and $\varphi^{+}(Q)$ generates $E'\left[\frac{\pi+1}{2}\right]$.

 $\mathsf{Magic}^{\mathsf{TM}}$

$$\begin{split} & \operatorname{Magic}^{\mathsf{TM}} \left(\operatorname{since} \left\langle P \right\rangle \cap \left\langle Q \right\rangle = \{ 0 \} \right) \\ & \varphi^{-}(P) \text{ generates } E' \left[\frac{\pi - 1}{2} \right], \text{ and } \varphi^{+}(Q) \text{ generates } E' \left[\frac{\pi + 1}{2} \right]. \end{split}$$

MagicTM (since
$$\langle P \rangle \cap \langle Q \rangle = \{0\}$$
)
 $\varphi^{-}(P)$ generates $E'\left[\frac{\pi-1}{2}\right]$, and $\varphi^{+}(Q)$ generates $E'\left[\frac{\pi+1}{2}\right]$.

 \implies iterate to apply the action by any ideal class $(a_1, \ldots, a_n) \in \mathbb{Z}^n$.

MagicTM (since
$$\langle P \rangle \cap \langle Q \rangle = \{0\}$$
)
 $\varphi^{-}(P)$ generates $E'\left[\frac{\pi-1}{2}\right]$, and $\varphi^{+}(Q)$ generates $E'\left[\frac{\pi+1}{2}\right]$.

 \implies iterate to apply the action by any ideal class $(a_1, \ldots, a_n) \in \mathbb{Z}^n$.

Cost

One ℓ_i -isogeny for every *i* (i.e. one evaluation of $\frac{\pi-1}{2}$).

16 / 25

"Montgomery ladder" for binary ideal classes

 $\begin{array}{l} R_0 \leftarrow (E,P,Q), R_1 \leftarrow (E,Q,P); \\ \textbf{for } i = 0 \dots n \ \textbf{do} \\ \quad \mathsf{cswap}(R_0,R_1,\neg\mathsf{sk}[i]); \\ R_0 \leftarrow \mathsf{Isogeny}(R_0,\ell_i); \\ R_1 \leftarrow \mathsf{Multiply}(R_1,\ell_i); \\ \textbf{end for}; \\ R_0[1] \leftarrow R_1[2]; \\ \textbf{return } R_0; \end{array} \triangleright \begin{array}{l} \mathsf{Compute } \ell_i \text{-isogeny from } R_0[1]; \ \mathsf{push } R_0[1], R_0[2]. \\ \triangleright \ \mathsf{Multiply} \ R_1[1] \ \mathsf{by} \ \ell_i. \end{array}$

$$\left(\frac{\pi-1}{2}\right) = \prod \left(\ell_i, \frac{\pi-1}{2}\right) = \prod \mathfrak{l}_i.$$

In CSURF,

$$\left(\frac{\pi-1}{2}\right) = \prod \left(\ell_i, \frac{\pi-1}{2}\right) = \prod \mathfrak{l}_i.$$

In general: $\mathcal{O} = \mathbb{Z}[\sigma]$ If $N(\sigma) = \prod \ell_i^{e_i}$, In CSURF,

$$\left(\frac{\pi-1}{2}\right) = \prod \left(\ell_i, \frac{\pi-1}{2}\right) = \prod \mathfrak{l}_i.$$

In general: $\mathcal{O} = \mathbb{Z}[\sigma]$

If $N(\sigma) = \prod \ell_i^{e_i}$, then (assume $\gcd(N(\sigma), \operatorname{Disc}(\mathcal{O})) = 1$)

$$\mathfrak{l}(\sigma) = \prod (\ell_i, \sigma)^{e_i} = \prod \mathfrak{l}_i^{e_i}.$$

In CSURF,

$$\left(\frac{\pi-1}{2}\right) = \prod \left(\ell_i, \frac{\pi-1}{2}\right) = \prod \mathfrak{l}_i.$$

In general: $\mathcal{O} = \mathbb{Z}[\sigma]$

If $N(\sigma) = \prod \ell_i^{e_i}$, then (assume $\gcd(N(\sigma), \operatorname{Disc}(\mathcal{O})) = 1$)

$$\mathfrak{l}(\sigma) = \prod (\ell_i, \sigma)^{e_i} = \prod \mathfrak{l}_i^{e_i}.$$

 \implies effective class group action over \mathbb{F}_q if $E[\sigma] \subseteq E(\mathbb{F}_q)$.
In CSURF,

$$\left(\frac{\pi-1}{2}\right) = \prod \left(\ell_i, \frac{\pi-1}{2}\right) = \prod \mathfrak{l}_i.$$

In general: $\mathcal{O} = \mathbb{Z}[\sigma]$

If $N(\sigma) = \prod \ell_i^{e_i}$, then (assume $\gcd(N(\sigma), \operatorname{Disc}(\mathcal{O})) = 1$)

$$\mathfrak{l}(\sigma) = \prod (\ell_i, \sigma)^{e_i} = \prod \mathfrak{l}_i^{e_i}.$$

 \implies effective class group action over \mathbb{F}_q if $E[\sigma] \subseteq E(\mathbb{F}_q)$.

 $4N(\sigma) \lesssim 4q.$

In CSURF,

$$\left(\frac{\pi-1}{2}\right) = \prod \left(\ell_i, \frac{\pi-1}{2}\right) = \prod \mathfrak{l}_i.$$

In general: $\mathcal{O} = \mathbb{Z}[\sigma]$

If $N(\sigma) = \prod \ell_i^{e_i}$, then (assume $\gcd(N(\sigma), \operatorname{Disc}(\mathcal{O})) = 1$)

$$\mathfrak{l}(\sigma) = \prod (\ell_i, \sigma)^{e_i} = \prod \mathfrak{l}_i^{e_i}.$$

 \implies effective class group action over \mathbb{F}_q if $E[\sigma] \subseteq E(\mathbb{F}_q)$.

$$|\operatorname{Disc}(\mathcal{O})| = 4N(\sigma) - \operatorname{tr}(\sigma)^2 \le 4N(\sigma) \lesssim 4q.$$

In CSURF,

$$\left(\frac{\pi-1}{2}\right) = \prod \left(\ell_i, \frac{\pi-1}{2}\right) = \prod \mathfrak{l}_i.$$

In general: $\mathcal{O} = \mathbb{Z}[\sigma]$

If $N(\sigma) = \prod \ell_i^{e_i}$, then (assume $gcd(N(\sigma), Disc(\mathcal{O})) = 1$)

$$(\sigma) = \prod (\ell_i, \sigma)^{e_i} = \prod \mathfrak{l}_i^{e_i}.$$

 \implies effective class group action over \mathbb{F}_q if $E[\sigma] \subseteq E(\mathbb{F}_q)$.

$$|\operatorname{Disc}(\mathcal{O})| = 4N(\sigma) - \operatorname{tr}(\sigma)^2 \le 4N(\sigma) \lesssim 4q.$$

Quantum security

Depends on $\#Cl(\mathcal{O}) \approx 0.46 |\operatorname{Disc}(\mathcal{O})|^{1/2}$.

Marc Houben

30 April 2025

CSIDH parameter estimates

Recent estimates of p for various NIST levels¹, based on SQALE².

Prime bits	f	n	Excluded	Included	Key Space	NIST level
p2048	2^{64}	226	$\{1361\}$	_	2^{221}	1 (aggressive)
p4096	2^{1728}	262	$\{347\}$	$\{1699\}$	2^{256}	1 (conservative)
p5120	2^{2944}	244	$\{227\}$	$\{1601\}$	2^{234}	2 (aggressive)
p6144	2^{3776}	262	$\{283\}$	$\{1693, 1697, 1741\}$	2^{256}	2 (conservative)
p8192	2^{4992}	338	$\{401\}$	{2287,2377}	2^{332}	3 (aggressive)
p9216	2^{5440}	389	$\{179\}$	$\{2689, 2719\}$	2^{384}	3 (conservative)

¹Campos, F., Chávez-Saab, J., Chi-Domínguez, J.J., Meyer, M., Reijnders, K., Rodríguez-Henríquez, F., Schwabe, P., Wiggers, T.: Optimizations and practicality of high-security CSIDH. CiC (2024).

²Chávez-Saab, J., Chi-Domínguez, J.J., Jaques, S., Rodríguez-Henríquez, F.: The SQALE of CSIDH: sublinear Vélu quantum-resistant isogeny action with low exponents. Journal of Cryptographic Engineering (2022).

Marc Houben

$$p+1 = 4 \prod \ell_i, \qquad (\sigma) = \prod (\ell_i, \sigma)^4 = \prod \mathfrak{l}_i^4.$$

 $\ker \varphi_1 = E_1 \left[\prod \mathfrak{l}_i \right] \subseteq \mathbb{F}_{p^2}.$

 $\ker \varphi_1 = \langle P_1 \rangle \leftrightarrow \prod \mathfrak{l}_i = (1, \dots, 1),$

Marc Houben

Example

$$\varphi_1^+ \leftrightarrow (1, 0, 1, 1, 0, \ldots), \qquad \varphi_1^- \leftrightarrow (0, -1, 0, 0, -1, \ldots).$$

Marc Houben

A Montgomery ladder for isogenies

30 April 2025

Example

$$\varphi_1^+ \leftrightarrow (1, 0, 1, 1, 0, \ldots), \qquad \varphi_1^- \leftrightarrow (0, -1, 0, 0, -1, \ldots).$$

Marc Houben

A Montgomery ladder for isogenies

30 April 2025

21/25

Example

$$\rho_1^+ \leftrightarrow (1, 0, 1, 1, 0, \ldots), \qquad \varphi_1^- \leftrightarrow (0, -1, 0, 0, -1, \ldots).$$

Marc Houben

A Montgomery ladder for isogenies

30 April 2025

Numbers

Numbers

Let

$$p = 4 \cdot 3 \cdot 7 \cdot 13 \cdot 23 \cdot \underbrace{(3 \cdot 5 \cdot \ldots \cdot 293)}_{-1} -1 \cong 2^{413}.$$

61 consecutive primes

Numbers

Numbers

Let

$$p = 4 \cdot 3 \cdot 7 \cdot 13 \cdot 23 \cdot \underbrace{(3 \cdot 5 \cdot \ldots \cdot 293)}_{61 \text{ consecutive primes}} -1 \cong 2^{413}.$$

Then $E: y^2 = x^3 + x$ can be oriented by $\mathcal{O} = \mathbb{Z}[\sigma]$, where
$$N(\sigma) = \prod_i \ell_i^{5e_i}, \qquad \operatorname{tr}(\sigma) = 1130299,$$

such that

$$\operatorname{Disc}(\sigma)\cong 2^{2058}$$
 is prime.

Numbers

More numbers

Let

$$p = 4 \cdot 3 \cdot 5 \cdot 11 \cdot 13 \cdot 17 \cdot \underbrace{(3 \cdot 5 \cdot \ldots \cdot 337)}_{67 \text{ consecutive primes}} -1 \cong 2^{457}.$$

Then $E: y^2 = x^3 + x$ can be oriented by $\mathcal{O} = \mathbb{Z}[\sigma]$, where

$$N(\sigma) = \prod_{i} \ell_i^{9e_i}, \qquad \mathrm{tr}(\sigma) = 3672029,$$

such that

$$\operatorname{Disc}(\sigma) \cong 2^{4100}$$
 is prime.

Overview

High-level overview

(i) Evaluating a class group action is equivalent to factoring an endomorphism representing the orientation (and computing at least one of the factors).

- (i) Evaluating a class group action is equivalent to factoring an endomorphism representing the orientation (and computing at least one of the factors).
- (ii) This can be done in constant time at the cost of one evaluation of the endomorphism (i.e. by evaluating all of the factors).

Overview

- (i) Evaluating a class group action is equivalent to factoring an endomorphism representing the orientation (and computing at least one of the factors).
- (ii) This can be done in constant time at the cost of one evaluation of the endomorphism (i.e. by evaluating all of the factors).
- (iii) We can increase $\log(|\operatorname{Disc}(\mathcal{O})|)$ by a factor r for a cost factor r.

- (i) Evaluating a class group action is equivalent to factoring an endomorphism representing the orientation (and computing at least one of the factors).
- (ii) This can be done in constant time at the cost of one evaluation of the endomorphism (i.e. by evaluating all of the factors).
- (iii) We can increase $\log(|\operatorname{Disc}(\mathcal{O})|)$ by a factor r for a cost factor r.
- (iv) In particular, there exist families of class group action-based NIKEs more efficient than CSIDH (at a given NIST security level).

Thank you!

Algorithm 1 Evaluating a class group action using two kernel points

Input: An elliptic curve E/k, generators $P \in E[\sigma], Q \in E[\hat{\sigma}]$, a vector of integers $(s_1,\ldots,s_n) \in [0,e_i]^n$. **Output:** The curve $E' := \left[\prod_{i} \mathfrak{l}_{i}^{s_{i}}\right] * E$, generators $P' \in E'[\sigma], Q' \in E'[\hat{\sigma}]$. $(E^+, P^+, Q') \leftarrow (E, P, Q);$ $\triangleright P^+ \in E^+[\sigma] \text{ and } Q' \in E^+[\hat{\sigma}].$ $\triangleright P^- \in E^-[\hat{\sigma}] \text{ and } P' \in E^-[\sigma].$ $(E^-, P^-, P') \leftarrow (E, Q, P);$ $m \leftarrow \prod_i \ell_i^{e_i};$ for i = 1, ..., n do for $i = 1, \ldots, e_i$ do if $j < s_i$ then $m \leftarrow m/\ell_i$; $K \leftarrow [m]P^+$; $\triangleright K$ has order ℓ_i . $(E^+, P^+, Q') \leftarrow \text{EVALELLISOGENY}(E^+, K, P^+, Q');$ ▷ "Isogenv" $P^- \leftarrow [\ell_i]P^-$: ▷ "Multiply" else \triangleright Same as above, but with the roles of E^+ and E^- swapped. $m \leftarrow m/\ell_i; K \leftarrow [m]P^-;$ $(E^-, P^-, P') \leftarrow \text{EvalEllSogeny}(E^-, K, P^-, P');$ $P^+ \leftarrow [\ell_i]P^+$: end if end for end for assert $E^+ = E^-$: return $(E^+, P', Q');$