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@ Introduction: class group action on oriented curves
© The Clapoti method

© From Clapoti to Pegasis: making it effective and efficient
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Orientations

o Let O be a quadratic imaginary order.

o Let E/F > be a supersingular elliptic curve. A (primitive)
-orientation of E is an embedding:

t: O — End(E)

that is maximal (it does not extend to a superorder of O).

e We say that (E,1) is D-oriented.
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Orientations

e CI(D) acts faithfully and (almost) transitively on the set of
O-oriented curves.

@ An ideal a <O corresponds to an isogeny ¢4 : E — Eq of kernel:

Ela]:={PeE|Vaea, i(a)(P)=0}

@ There is also an D-orientation
1 .
ta = (pa)(t) @ — W(paot(a) °oPq

on E,.
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Orientations
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Orientations

e CI(D) acts faithfully and (almost) transitively on the set of
O-oriented curves.

@ An ideal a <O corresponds to an isogeny ¢4 : E — Eq of kernel:

Ela]:={PeE|Vaea, i(a)(P)=0}

@ There is also an D-orientation
1 .
la *= (‘pa)*(‘) e W‘Puol(a) °@q
on E,.

@ The action is trivial (E,t) = (Eq,tq) if and only if a is principal.
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Example: CSIDH and CSURF

@ Let p=7 mod8. Consider a supersingular Montgomery curve
E:y2 =x3+ Ax® +x

with AeFp.

® Then Endg,(E) contains the Frobenius endomorphism
npi(x,y)e E— (xP,yP)€E,

which satisfies ﬂf, =—[p].
@ Hence E is Z[,/=p]-oriented:

Z[y=pl — Ends,(E)
V=P — Tp '
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Orientations
Effective group actions

Example: CSIDH and CSURF

@ Let p=7 mod8. Consider a supersingular Montgomery curve
E:y2 =x3+ Ax® +x

with AeFp.

® Then Endg,(E) contains the Frobenius endomorphism
npi(x,y)e E— (xP,yP)€E,

which satisfies ﬂf, =—[p].
@ Hence E is Z[,/=p]-oriented:

z[y=p] — Ends,(E)
/—p +— Ty
@ This orientation is not always primitive: there are two cases.
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Introduction: class group action on oriented curves

Orientations
Effective group actions

Example: CSIDH and CSURF

E is either:
@ On the surface: primitively Z[(1+ ,/=p)/2]-oriented (CSURF).
@ On the floor: primitively Z[,/=p]-oriented (CSIDH).

—— 2-isogenies
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Effective group action

An effective group action (EGA) G ~ X is:

© Commutative.

© Free: VxeX,ge G, g-x=x=g=e.
© Transitive: Vx,ye X, 3ge G, g-x=y.

@ Easy to compute: g-x can be evaluated in polynomial time for all
g€ G and xe X.

@ One way: given x and g-x, g€ G is hard to find.
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Effective group action

An effective group action (EGA) G ~ X is:

© Commutative.

© Free: VxeX,ge G, g-x=x=g=e.
© Transitive: Vx,ye X, 3ge G, g-x=y.

@ Easy to compute: g-x can be evaluated in polynomial time for all
g€ G and xe X.

@ One way: given x and g-x, g€ G is hard to find.

e With effective group actions, we can derive many schemes (including
key exchange, signatures and more).
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Restricted effective group actions

o Actually, group actions based on orientations are restricted effective
group actions. We can act by ideals of small norms [4,---,[; that
generate CI(O).

@ To act with the whole of CI(9) we consider products

t
azl_[[f".

i=1
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Introduction: class group action on oriented curves
Orientations
Effective group actions

Restricted effective group actions

o Actually, group actions based on orientations are restricted effective
group actions. We can act by ideals of small norms [4,---,[; that
generate CI(O).

@ To act with the whole of CI(9) we consider products

t
azl_[[f".

i=1

o /N\ lIssue: it is non trivial (and not very efficient) to sample uniform
classes in CI(£) with such products, as required in some protocols

(e.g. CSI-FiSh).
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Kani's embedding lemma
@it i Ao emel) e
Clapoti

The Clapoti method

d-isogenies and the dual isogeny in higher dimension

Definition (d-isogeny)

Let ¢:(A,Aa) — (B,Ag) be an isogeny between two principally
polarized abelian varieties (PPAV). We define:

o p:=Aylopolg:B—A

~ & AL
Ble. g 2. A1A A

o We say that ¢ is a d-isogeny or has polarized degree d if pog =[d]a.
A v
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The Clapoti method

Kani's embedding lemma
ety e Ao e e

Clapoti

Kani's embedding lemma [Kan97]

Definition (isogeny diamond)

An (a, b)-isogeny diamond is
a commutative diagram s.t.:

where @, ¢’ are a-isogenies
and y,y’ are b-isogenies.

Consider the (a, b)-isogeny diamond on the
left. Then:

o F:AxB' — BxA,

(% 9
-y @

is a d-isogeny with d =a+b.
o Ifanb=1, then

ker(F) = {(@(x), '(x)) | x € B[d]}.
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Computing 2¢-isogenies

Theorem (D. and Robert)

Let k be a field such that char(k) #2. Then there exists an algorithm
that takes as input:
@ A principally polarised abelian variety A of dimension g defined
over k;
e Points Ty,---, Tg€ A[2e+2] defined over k forming a maximal
isotropic subgroup of A[2¢*2];
And returns a 2¢-isogeny F : A— B with kernel {[4] Ty,---,[4] Tg)
represented as a chain of 2-isogenies with a number of operations over k
polynomial in e and 28 .
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The Clapoti method

Goal: Compute E, for any a < O.

Al L AV
Assumption: p=c2¢-1.
o We solve: ¥ £d
_ nf
uN(b) +vN(c) =2, TE

with b,c~a, f<e-2 and
ged(ulN(b),vN(c)) =1.

o If ®, and @, are d-dimensional,
the resulting Kani 2f-isogeny

F:A xA, — EIx A

is 2d-dimensional.
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The Clapoti method - Outline

Goal: Compute E, for any ideal ac© and O-oriented curve (E,¢).
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The Clapoti method - Outline

Goal: Compute E, for any ideal ac© and O-oriented curve (E,¢).
Assumption: p=c2¢-1.

Step 1: Find ideals b,c~a and u,v €N such that
ged(uN(6),vN(c))=1 and

uN(b)+vN(c)=2f (f<e-2).
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The Clapoti method - Outline

Goal: Compute E, for any ideal ac© and O-oriented curve (E,¢).
Assumption: p=c2¢-1.

Step 1: Find ideals b,c~a and u,v €N such that
ged(uN(6),vN(c))=1 and

uN(b)+vN(c)=2f (f<e-2).

Step 2: Compute a u-isogeny @, : E9 — A, and a v-isogeny
®,: E?Y— A, in dimension d.
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The Clapoti method - Outline

Goal: Compute E, for any ideal ac© and O-oriented curve (E,¢).
Assumption: p=c2¢-1.

Step 1: Find ideals b,c~a and u,v €N such that
ged(uN(6),vN(c))=1 and

uN(b)+vN(c)=2f (f<e-2).

Step 2: Compute a u-isogeny @, : E9 — A, and a v-isogeny
®,: E?Y— A, in dimension d.

Step 3: Evaluate the endomorphism of E associated to bc.
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The Clapoti method

The Clapoti method - Outline

Goal: Compute E, for any ideal ac© and O-oriented curve (E,¢).

Assumption: p=c2¢-1.

Step 1: Find ideals b,c~a and u,v €N such that
ged(uN(6),vN(c))=1 and

uN(b)+vN(c)=2f (f<e-2).
Step 2: Compute a u-isogeny @, : E9 — A, and a v-isogeny
®,: E?Y— A, in dimension d.
Step 3: Evaluate the endomorphism of E associated to bc.

Step 4: Compute a 2d-dimensional isogeny F: A, x A, — Eg x Al
embedding ¢y, ., ®,, P, .

Step 5: Extract E, from the codomain EZ x A'.
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The Clapoti method

The auxiliary isogenies ®, and @,

@ ®, and @, are hard to compute in dimension d = 1.
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The Clapoti method

The auxiliary isogenies ®, and @,

@ ®, and @, are hard to compute in dimension d = 1.
e In KlaPoTi [PPS24], they impose u=v =1:
N(b)+N(c) =2f.

e KLPT [KLPT14] is used to find b,c~a.
@ Only possible for small discriminants |disc(O)| < 2f /3~ p1/3,
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The Clapoti method

The auxiliary isogenies ®, and @,

@ ®, and @, are hard to compute in dimension d = 1.

e In KlaPoTi [PPS24], they impose u=v =1:

N(b)+N(c) =2f.

KLPT [KLPT14] is used to find b,c ~a.
Only possible for small discriminants |disc(O)| < 2f /3~ p1/3,

(]

PEGASIS: a solution for [disc(D)| = p but with d =2.
We have to compute 4-dimensional isogenies!
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The norm equation

Kernel points and 4-dimensional isogeny computation
Implementation and performance

From Clapoti to Pegasis: making it effective and
efficient

Dartois
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The norm equation

Kernel points and 4-dimensional isogeny computation
Implementation and performance

Step 2: computing @, and ®, - sums of squares

Goal: Given u<2¢2 odd and an D-oriented curve (E,t), compute a

u-isogeny @, : E2 — A,,.
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From Clapoti to Pegasis: making it effective and efficient Kernel points and 4-dimensional isogeny computation
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Step 2: computing @, and ®, - sums of squares

Goal: Given u<2¢2 odd and an D-oriented curve (E,t), compute a
u-isogeny @, : E2 — A,,.

Issue: With any u, it requires to compute a 4-dimensional isogeny
[NO23].
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Step 2: computing @, and ®, - sums of squares

Goal: Given u<2¢2 odd and an D-oriented curve (E,t), compute a
u-isogeny @, : E2 — A,,.

Issue: With any u, it requires to compute a 4-dimensional isogeny
[NO23].
Idea: Require u of special form.

o Assume u=gy(x2+y?2).

P. Dartois PEGASIS 18 /31



Finding isogenies of fixed polarised degree
The norm equation

From Clapoti to Pegasis: making it effective and efficient Kernel points and 4-dimensional isogeny computation
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Step 2: computing @, and ®, - sums of squares

Goal: Given u<2¢2 odd and an D-oriented curve (E,t), compute a
u-isogeny @, : E2 — A,,.

Issue: With any u, it requires to compute a 4-dimensional isogeny
[NO23].
Idea: Require u of special form.

o Assume u=gy(x2+y?2).
@ Then, we can define: We can define

(DUZZ(XU ~Yu )(‘Pu 0 ):E2—'E2
Yu Xu 0 oy

with deg(¢u) = gu.
@ gy, is a product of small primes that split in O so that ¢, is given by
an ideal action g,,.

@ Only 1-dimensional computations are involved.
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Step 1: tweaking the norm equation

@ We want to solve:

uN(b)+vN(c) =2f
with b,c~a, gcd(uN(b),vN(c))=1, f<e-2,

u=gu(x3+yZ) and v=g,(x2+y2).

P. Dartois
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Step 1: tweaking the norm equation

@ We want to solve:
uN(b)+vN(c) =2f

with b,c~a, gcd(uN(b),vN(c))=1, f<e-2,

u=gu(x3+yZ) and v=g,(x2+y2).

@ Issue: This might be to tight to be solved.

@ Solution: Let b=Db7-by and ¢=c¢q1-cp, where by and ¢1 are a
product of small prime ideals in O.

@ Solve the following instead:

uN(b2) +vN(cz) = 2F.
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Finding isogenies of fixed polarised degree
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From Clapoti to Pegasis: making it effective and efficient Kernel points and 4-dimensional isogeny computation
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Step 1: an algorithm

Goal: solve uN(by)+vN(cp)=2".

@ Sample B,y € a as follows:

e Find a Lagrange-Gauss reduced basis (a1, a) of a.
o Sample small x,y,z,t€Z and set f:=xa1+yap and y:=zaj +tas.

o Set b:=af/N(a) and ¢:=ay/N(a).
@ Factor b="b1-by and c=¢1-co.

@ Repeat until we can find suitable u,v.
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From Clapoti to Pegasis: making it effective and efficient Kernel points and 4-dimensional isogeny computation
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Step 1: norm constraints

@ By Minkowski's bounds, the Lagrange-Gauss reduced basis satisfies:

N(a1)N(az) = N(a)2|A|

e So we expect N(a1) = N(az)=N(a)yIAl, so that
N(B) = N(y) = N(a)vIAl and:

N(a) = N(b) = /Al
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Step 1: norm constraints

@ By Minkowski's bounds, the Lagrange-Gauss reduced basis satisfies:

N(a1)N(az) = N(a)2|A|

So we expect N(a1) = N(az)=N(a)yIAl, so that
N(B) = N(y) = N(a)vIAl and:

N(a) = N(b) = /Al

To solve uN(bp) +vN(c2) =27, we need N(b2)N(cp) <2f =p.

@ We can solve it as long as |A| < p.

Example: In CSURF, |A|=p.
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Finding isogenies of fixed polarised degree
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From Clapoti to Pegasis: making it effective and efficient Kernel points and 4-dimensional isogeny computation
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Steps 3-5: applying Kani's lemma

@ We have the following (uN(b3), vN(c2))-isogeny diamond:

)
E2———————— E2
@,
2 4 2
v ES, «—E

[e
bo
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Steps 3-5: applying Kani's lemma

e This isogeny diamond yields a 2f-isogeny 4-dimensional

[ Dy, o(fu D, o(fv

F -¥ ®

E2xE2 — E2x E"?
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Steps 3-5: applying Kani's lemma

e This isogeny diamond yields a 2f-isogeny 4-dimensional

[ Dy, o(fu D, o(fv

F -¥ ®

):Eu?xEE—»ngE’z.

@ The 2f*2 torsion above ker(F) can be computed by evaluating ®,,
®, and:

PepoPp, = ! Peq 0L BY °Pp
2777 N(bp)N(er) ™™ N(a) !
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e This isogeny diamond yields a 2f-isogeny 4-dimensional

[ Dy, o(fu D, o(fv

F -¥ ®

):Eu?xEE—»ngE’z.

@ The 2f*2 torsion above ker(F) can be computed by evaluating ®,,
®, and:

PepoPp, = ! Peq 0L BY °Pp
2777 N(bp)N(er) ™™ N(a) !

@ F can then be computed efficiently with theta coordinates [Dar24].
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Steps 3-5: applying Kani's lemma

e This isogeny diamond yields a 2f-isogeny 4-dimensional

[ Dy, o(fu D, o(fv

F -¥ ®

):Eu?xEE—»ngE’z.

@ The 2f*2 torsion above ker(F) can be computed by evaluating ®,,
®, and:

Per 0Py, = . Pey ot Py °Pp
2 N(b)N(e) T (N(a) ) T
@ F can then be computed efficiently with theta coordinates [Dar24].

o We can then extract E, from the codomain E2 x E"?
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Steps 3-5: applying Kani's lemma

e This isogeny diamond yields a 2f-isogeny 4-dimensional

[ Dy, o(fu D, otfv

F -¥ ®

):Eu?xEE—»EfxE’z.

@ The 2f*2 torsion above ker(F) can be computed by evaluating ®,,
®, and:

Per 0Py, = . Pey ot Py °Pp
2 N(b)N(e) T (N(a) ) T
@ F can then be computed efficiently with theta coordinates [Dar24].
o We can then extract E, from the codomain E2 x E"?

@ The orientation tq := (¢q)«t on Eq can be evaluated with F
(unnecessary for CSURF).
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Finding isogenies of fixed polarised degree
The norm equation
Kernel points and 4-dimensional isogeny computation

From Clapoti to Pegasis: making it effective and efficient
Implementation and performance

Implementation for CSURF

Parameter set ‘ Step 1 (s) Step 2-3 (s) Steps 4-5 (s) Total (s)

500 0.097 0.477 0.960 1.534
1000 0.212 1.159 2.838 4.210
1500 1.186 2.853 6.491 10.530
2000 1.675 8.337 11.327 21.339
4000 15.606 52.808 53.463 121.876

Table: SageMath 10.5 timings in sec on Intel Core i5-1235U. Step 1 is the time
to solve the norm equation, Steps 2-3 the time to compute all required
1-dimensional isogenies, and Steps 4-5 the time to compute the 4-dimensional

isogeny.
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Finding isogenies of fixed polarised degree
The norm equation

From Clapoti to Pegasis: making it effective and efficient Kernel points and 4-dimensional isogeny computation
Implementation and performance

Comparison with state of the art

Paper Impl. || 500 1000 1500 2000 4000
SCALLOP [FFK+23]* C++ 35s  12m30s - - -
SCALLOP-HD [CLP24]* Sage 88s 19m - - -
PEARL-SCALLOP [ABE+24] C++ 30s 58s 12m - -
KLaPoTi [PPS24] Sage || 200s - - - -
Rust 1.95s - - - -

PEGASIS (This work) Sage 1.53s 4.21s 10.5s 21.3s  2m2s

Table: Comparison between PEGASIS and other effective group actions in the
literature. The last 5 columns gives the timings corresponding to the different
security levels, where s/m gives the number of seconds/minutes in wall-clock

time. SCALLOP and SCALLOP-HD are starred because they were measured

on a different hardware setup.
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Conclusion

To sum up:

@ We now have an unrestricted group action which is efficient in
practice.

@ Made possible with the use of 4-dimensional isogenies.
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Conclusion

Conclusion

To sum up:

@ We now have an unrestricted group action which is efficient in
practice.

@ Made possible with the use of 4-dimensional isogenies.

Future works/open questions:
o Need to implement 4-dimensional isogenies in C and/or Rust.

o CSURF was efficient because computations were done over Fj,. Need
to better understand 4-dimensional isogeny computations over Fp,.

@ Could we do better in dimension 27

e What can be done when |disc(O)| > p?
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Conclusion

Thanks for listening!

P. Dartois, J. Komada Eriksen, T. B. Fouotsa, A. Herlédan Le Merdy, R. Invernizzi, D. Robert,
R. Rueger, F. Vercauteren and B. Wesolowski. PEGASIS: Practical Effective Class Group
Action using 4-Dimensional Isogenies. e-Print https://eprint.iacr.org/2023/436
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Further algorithmic details

Step 2: computing ®, and ®, - general case

Goal: Given u <22 odd and an O-oriented curve (E,t), compute a
u-isogeny @, : E2 — A,.

@ A method inspired from QFESTA [NO23].
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Step 2: computing ®, and ®, - general case

Goal: Given u <22 odd and an O-oriented curve (E,t), compute a
u-isogeny @, : E2 — A,.

@ A method inspired from QFESTA [NO23].

o Let A:=disc(D) and assume u(2f —u):= Q(|Allog(]Al)) (with
f=e-2).

@ Solve:
X2+ 22 +1A1(y? +t2) = u(2f - u),

with x,y,z,teZ.
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Further algorithmic details

Step 2: computing ®, and ®, - general case

Goal: Given u <22 odd and an O-oriented curve (E,t), compute a
u-isogeny @, : E2 — A,.

@ A method inspired from QFESTA [NO23].

o Let A:=disc(D) and assume u(2f —u):= Q(|Allog(]Al)) (with
f=e-2).

e Solve:
X2+ 22 +1A1(y? +t2) = u(2f - u),
with x,y,z,teZ.
o Let y1:=x+VAy,y2:=z+VAteD and:

[ ) i(7)
U=\ Sy ) ) SEMED)

@ Then Tol':=[N(y1)+ N(y2)] = u(2f - u).
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Further algorithmic details

Step 2: computing ®, and ®, - general case

o Consider the isogeny
diamond:
!
u
Ay —— E?

r
7 v,

@y
E2— Ay

with deg(®,)=u and
deg(¥,)=2" —u.
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Further algorithmic details

Step 2: computing ®, and ®, - general case

o Consider the isogeny @ By Kani's lemma, it induces a
diamond: 2f -isogeny
(0} ~
Al —u> 2 i q)u \Pu =
T
7 ¥,

@y
E2— Ay

with deg(®,)=u and
deg(¥,)=2" —u.
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Further algorithmic details

Step 2: computing ®, and ®, - general case

o Consider the isogeny @ By Kani's lemma, it induces a
diamond: 2f -isogeny
!
Al —u> 2 i q)u q’u =
g E F“':(—‘{”u 7| B Aux A,
T
v, v,
o With kernel:

O]

E24U>Au

ker(Fy) = {([u]P,[4]Q.T(P, Q))

with deg(®,)=u and P, Qe E[2].

deg(¥,)=2" —u.

o Knowing t, we can compute
2f*+2_torsion above ker(F,) and F,.

P. Dartois PEGASIS 30/31



Further algorithmic details

Step 2: computing ®, and ®, - general case

o Consider the isogeny @ By Kani's lemma, it induces a
diamond: 2f -isogeny

!

Alu —u> E2 ( D, {pu) 2 li

F,:= ~ | E-f— A, xA,

SR O ST un
T

v, v,
o With kernel:

O]

E24U>Au

ker(Fy) = {([u]P,[4]Q.T(P, Q))

with deg(®,)=u and P, Qe E[2].

deg(¥,)=2" —u.

o Knowing t, we can compute
2f*+2_torsion above ker(F,) and F,.

o F, represents @,.
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Further algorithmic details

Step 1: rerandomization

Issue: What happens when N(a1) < N(a3)?
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Further algorithmic details

Step 1: rerandomization

Issue: What happens when N(a1) < N(a3)?

Solution:
@ Replace a by la for a small prime ideal I.
@ Replace E by E;.

@ Repeat until N(a1) = N(az) (for the new ideal a).
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