Practical Effective Class Group Action using 4-Dimensional Isogenies

Pierrick Dartois, Jonathan Komada Eriksen, Tako Boris Fouotsa, Arthur Herlédan Le Merdy, Riccardo Invernizzi, Damien Robert, Ryan Rueger, Frederik Vercauteren and Benjamin Wesolowski

2025, April 30

1 Introduction: class group action on oriented curves

2 The Clapoti method

3 From Clapoti to Pegasis: making it effective and efficient

Orientations Effective group actions

Introduction: class group action on oriented curves

Orientations

Orientations Effective group actions

• Let \mathfrak{O} be a quadratic imaginary order.

Orientations

Orientations Effective group actions

- Let \mathfrak{O} be a quadratic imaginary order.
- Let E/\mathbb{F}_{p^2} be a supersingular elliptic curve. A (primitive) \mathfrak{O} -orientation of E is an embedding:

 $\iota: \mathfrak{O} \hookrightarrow \operatorname{End}(E)$

that is maximal (it does not extend to a superorder of \mathfrak{O}).

Orientations

Orientations Effective group actions

 Cl(D) acts faithfully and (almost) transitively on the set of D-oriented curves.

Orientations

- Cl(D) acts faithfully and (almost) transitively on the set of D-oriented curves.
- An ideal $\mathfrak{a} \subseteq \mathfrak{O}$ corresponds to an isogeny $\varphi_{\mathfrak{a}} : E \longrightarrow E_{\mathfrak{a}}$ of kernel:

$$E[\mathfrak{a}] := \{ P \in E \mid \forall \alpha \in \mathfrak{a}, \quad \iota(\alpha)(P) = 0 \}$$

Orientations

Effective group actions

 $\bullet\,$ There is also an $\mathfrak O\text{-orientation}\,$

$$\iota_{\mathfrak{a}} := (\varphi_{\mathfrak{a}})_*(\iota) : \alpha \longmapsto \frac{1}{N(\mathfrak{a})} \varphi_{\mathfrak{a}} \circ \iota(\alpha) \circ \widehat{\varphi}_{\mathfrak{a}}$$

on $E_{\mathfrak{a}}$.

Orientations

- Cl(D) acts faithfully and (almost) transitively on the set of D-oriented curves.
- An ideal $\mathfrak{a} \subseteq \mathfrak{O}$ corresponds to an isogeny $\varphi_{\mathfrak{a}} : E \longrightarrow E_{\mathfrak{a}}$ of kernel:

$$E[\mathfrak{a}] := \{ P \in E \mid \forall \alpha \in \mathfrak{a}, \quad \iota(\alpha)(P) = 0 \}$$

Orientations

Effective group actions

 \bullet There is also an $\mathfrak O\text{-orientation}$

$$\iota_{\mathfrak{a}} := (\varphi_{\mathfrak{a}})_*(\iota) : \alpha \longmapsto \frac{1}{N(\mathfrak{a})} \varphi_{\mathfrak{a}} \circ \iota(\alpha) \circ \widehat{\varphi}_{\mathfrak{a}}$$

on $E_{\mathfrak{a}}$.

• The action is trivial $(E,\iota) \simeq (E_{\mathfrak{a}},\iota_{\mathfrak{a}})$ if and only if \mathfrak{a} is principal.

Orientations Effective group actions

Example: CSIDH and CSURF

• Let $p \equiv 7 \mod 8$. Consider a supersingular Montgomery curve

$$E: y^2 = x^3 + Ax^2 + x$$

with $A \in \mathbb{F}_p$.

• Then $\operatorname{End}_{\mathbb{F}_p}(E)$ contains the Frobenius endomorphism

$$\pi_p:(x,y)\in E\longmapsto (x^p,y^p)\in E,$$

which satisfies $\pi_p^2 = -[p]$.

• Hence *E* is $\mathbb{Z}[\sqrt{-p}]$ -oriented:

$$\mathbb{Z}[\sqrt{-p}] \quad \hookrightarrow \quad \operatorname{End}_{\mathbb{F}_p}(E) \sqrt{-p} \quad \longmapsto \quad \pi_p$$

Orientations Effective group actions

Example: CSIDH and CSURF

• Let $p \equiv 7 \mod 8$. Consider a supersingular Montgomery curve

$$E: y^2 = x^3 + Ax^2 + x$$

with $A \in \mathbb{F}_p$.

• Then $\operatorname{End}_{\mathbb{F}_p}(E)$ contains the Frobenius endomorphism

$$\pi_p:(x,y)\in E\longmapsto (x^p,y^p)\in E,$$

which satisfies $\pi_p^2 = -[p]$.

• Hence *E* is $\mathbb{Z}[\sqrt{-p}]$ -oriented:

$$\mathbb{Z}[\sqrt{-p}] \quad \hookrightarrow \quad \operatorname{End}_{\mathbb{F}_p}(E) \\ \sqrt{-p} \quad \longmapsto \quad \pi_p$$

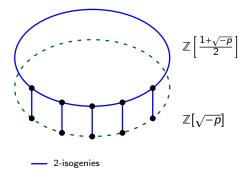
• This orientation is not always primitive: there are two cases.

Orientations Effective group actions

Example: CSIDH and CSURF

E is either:

- On the surface: primitively $\mathbb{Z}[(1+\sqrt{-p})/2]$ -oriented (CSURF).
- On the floor: primitively $\mathbb{Z}[\sqrt{-p}]$ -oriented (CSIDH).



Orientations Effective group actions

Effective group action

Definition

An effective group action (EGA) $G \cap X$ is:

- Commutative.
- So Free: $\forall x \in X, g \in G, \quad g \cdot x = x \Longrightarrow g = e.$
- **•** Transitive: $\forall x, y \in X, \exists g \in G, g \cdot x = y$.
- Easy to compute: $g \cdot x$ can be evaluated in polynomial time for all $g \in G$ and $x \in X$.
- **One way:** given x and $g \cdot x$, $g \in G$ is hard to find.

Orientations Effective group actions

Effective group action

Definition

An effective group action (EGA) $G \cap X$ is:

- Commutative.
- So Free: $\forall x \in X, g \in G, g \cdot x = x \Longrightarrow g = e.$
- **•** Transitive: $\forall x, y \in X, \exists g \in G, g \cdot x = y$.
- Easy to compute: $g \cdot x$ can be evaluated in polynomial time for all $g \in G$ and $x \in X$.
- **One way:** given x and $g \cdot x$, $g \in G$ is hard to find.
 - With effective group actions, we can derive many schemes (including key exchange, signatures and more).

Orientations Effective group actions

Restricted effective group actions

- Actually, group actions based on orientations are restricted effective group actions. We can act by ideals of small norms *l*₁,...,*l*_t that generate Cl(𝔅).
- \bullet To act with the whole of $\mathsf{Cl}(\mathfrak{O})$ we consider products

$$\mathfrak{a}=\prod_{i=1}^t\mathfrak{l}_i^{\mathbf{e}_i}.$$

Orientations Effective group actions

Restricted effective group actions

- Actually, group actions based on orientations are restricted effective group actions. We can act by ideals of small norms l_1, \dots, l_t that generate $Cl(\mathfrak{O})$.
- \bullet To act with the whole of $\mathsf{Cl}(\mathfrak{O})$ we consider products

$$\mathfrak{a}=\prod_{i=1}^t\mathfrak{l}_i^{\mathbf{e}_i}.$$

▲ Issue: it is non trivial (and not very efficient) to sample uniform classes in Cl(D) with such products, as required in some protocols (*e.g.* CSI-FiSh).

class group action on oriented curves The Clapoti method asis: making it effective and efficient Conclusion	Kani's embedding lemma Computing higher dimensional isogenies Clapoti

The Clapoti method

Kani's embedding lemma Computing higher dimensional isogenies Clapoti

d-isogenies and the dual isogeny in higher dimension

Definition (*d*-isogeny)

Let $\varphi: (A, \lambda_A) \longrightarrow (B, \lambda_B)$ be an isogeny between two principally polarized abelian varieties (PPAV). We define:

•
$$\widetilde{\varphi} := \lambda_A^{-1} \circ \widehat{\varphi} \circ \lambda_B : B \longrightarrow A.$$

$$B \xrightarrow{\lambda_B} \widehat{B} \xrightarrow{\widehat{\varphi}} \widehat{A} \xrightarrow{\lambda_A^{-1}} A$$

• We say that φ is a <u>d-isogeny</u> or has <u>polarized</u> degree <u>d</u> if $\tilde{\varphi} \circ \varphi = [d]_A$.

Kani's embedding lemma Computing higher dimensional isogenies Clapoti

Kani's embedding lemma [Kan97]

Definition (isogeny diamond)

An <u>(a, b)-isogeny diamond</u> is a commutative diagram s.t.:

where φ, φ' are *a*-isogenies and ψ, ψ' are *b*-isogenies.

Lemma (Kani)

Consider the (a, b)-isogeny diamond on the left. Then:

•
$$F: A \times B' \longrightarrow B \times A'$$
,

$$F:=\begin{pmatrix} \varphi & \widetilde{\psi'} \\ -\psi & \widetilde{\varphi'} \end{pmatrix}$$

is a d-isogeny with d = a + b.

• If $a \wedge b = 1$, then

$$\ker(F) = \{ (\widetilde{\varphi}(x), \psi'(x)) \mid x \in B[d] \}.$$

Kani's embedding lemma Computing higher dimensional isogenies Clapoti

Computing 2^e-isogenies

Theorem (D. and Robert)

Let k be a field such that $char(k) \neq 2$. Then there exists an algorithm that takes as input:

- A principally polarised abelian variety A of dimension g defined over k;
- Points T₁,..., T_g ∈ A[2^{e+2}] defined over k forming a maximal isotropic subgroup of A[2^{e+2}];

And returns a 2^{e} -isogeny $F : A \longrightarrow B$ with kernel $\langle [4]T_1, \dots, [4]T_g \rangle$ represented as a chain of 2-isogenies with a number of operations over k polynomial in e and 2^{g} .

Kani's embedding lemma Computing higher dimensional isogenies Clapoti

The Clapoti method

Goal: Compute $E_{\mathfrak{a}}$ for any $\mathfrak{a} \subseteq \mathfrak{O}$.

Assumption: $p = c2^e - 1$.

• We solve:

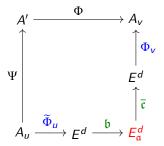
$$uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^f,$$

with $\mathfrak{b}, \mathfrak{c} \sim \mathfrak{a}, f \leq e-2$ and $gcd(uN(\mathfrak{b}), vN(\mathfrak{c})) = 1$.

 If Φ_u and Φ_v are *d*-dimensional, the resulting Kani 2^f-isogeny

$$F: A_u \times A_v \longrightarrow E_a^d \times A'$$

is 2d-dimensional.



Kani's embedding lemma Computing higher dimensional isogenies Clapoti

The Clapoti method - Outline

Goal: Compute $E_{\mathfrak{a}}$ for any ideal $\mathfrak{a} \subseteq \mathfrak{O}$ and \mathfrak{O} -oriented curve (E, ι) .

Kani's embedding lemma Computing higher dimensional isogenies Clapoti

The Clapoti method - Outline

Goal: Compute $E_{\mathfrak{a}}$ for any ideal $\mathfrak{a} \subseteq \mathfrak{O}$ and \mathfrak{O} -oriented curve (E, ι) .

Assumption: $p = c2^e - 1$.

Step 1: Find ideals $\mathfrak{b}, \mathfrak{c} \sim \mathfrak{a}$ and $u, v \in \mathbb{N}$ such that $gcd(uN(\mathfrak{b}), vN(\mathfrak{c})) = 1$ and

 $uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^f \quad (f \le e-2).$

Kani's embedding lemma Computing higher dimensional isogenies Clapoti

The Clapoti method - Outline

Goal: Compute $E_{\mathfrak{a}}$ for any ideal $\mathfrak{a} \subseteq \mathfrak{O}$ and \mathfrak{O} -oriented curve (E, ι) .

Assumption: $p = c2^e - 1$.

Step 1: Find ideals $b, c \sim a$ and $u, v \in \mathbb{N}$ such that gcd(uN(b), vN(c)) = 1 and

$$uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^f \quad (f \le e-2).$$

Step 2: Compute a *u*-isogeny $\Phi_u : E^d \longrightarrow A_u$ and a *v*-isogeny $\Phi_v : E^d \longrightarrow A_v$ in dimension *d*.

Kani's embedding lemma Computing higher dimensional isogenies Clapoti

The Clapoti method - Outline

Goal: Compute $E_{\mathfrak{a}}$ for any ideal $\mathfrak{a} \subseteq \mathfrak{O}$ and \mathfrak{O} -oriented curve (E, ι) .

Assumption: $p = c2^e - 1$.

Step 1: Find ideals $b, c \sim a$ and $u, v \in \mathbb{N}$ such that gcd(uN(b), vN(c)) = 1 and

$$uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^f \quad (f \le e - 2).$$

Step 2: Compute a *u*-isogeny $\Phi_u : E^d \longrightarrow A_u$ and a *v*-isogeny $\Phi_v : E^d \longrightarrow A_v$ in dimension *d*.

Step 3: Evaluate the endomorphism of E associated to $b\bar{c}$.

Kani's embedding lemma Computing higher dimensional isogenies Clapoti

The Clapoti method - Outline

Goal: Compute $E_{\mathfrak{a}}$ for any ideal $\mathfrak{a} \subseteq \mathfrak{O}$ and \mathfrak{O} -oriented curve (E, ι) .

Assumption: $p = c2^e - 1$.

Step 1: Find ideals $b, c \sim a$ and $u, v \in \mathbb{N}$ such that gcd(uN(b), vN(c)) = 1 and

$$uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^f \quad (f \le e - 2).$$

- Step 2: Compute a *u*-isogeny $\Phi_u : E^d \longrightarrow A_u$ and a *v*-isogeny $\Phi_v : E^d \longrightarrow A_v$ in dimension *d*.
- Step 3: Evaluate the endomorphism of E associated to $b\bar{c}$.
- Step 4: Compute a 2*d*-dimensional isogeny $F : A_v \times A_v \longrightarrow E_a^d \times A'$ embedding $\varphi_b, \varphi_c, \Phi_u, \Phi_v$.
- Step 5: Extract E_a from the codomain $E_a^d \times A'$.

Kani's embedding lemma Computing higher dimensional isogenies Clapoti

The auxiliary isogenies Φ_u and Φ_v

• Φ_u and Φ_v are hard to compute in dimension d = 1.

Kani's embedding lemma Computing higher dimensional isogenies Clapoti

The auxiliary isogenies Φ_u and Φ_v

- Φ_u and Φ_v are hard to compute in dimension d = 1.
- In KlaPoTi [PPS24], they impose u = v = 1:

$$N(\mathfrak{b})+N(\mathfrak{c})=2^f.$$

- KLPT [KLPT14] is used to find $\mathfrak{b}, \mathfrak{c} \sim \mathfrak{a}$.
- Only possible for small discriminants $|\operatorname{disc}(\mathfrak{O})| \le 2^{f/3} \simeq p^{1/3}$.

Kani's embedding lemma Computing higher dimensional isogenies Clapoti

The auxiliary isogenies Φ_u and Φ_v

- Φ_u and Φ_v are hard to compute in dimension d = 1.
- In KlaPoTi [PPS24], they impose u = v = 1:

$$N(\mathfrak{b}) + N(\mathfrak{c}) = 2^f.$$

- KLPT [KLPT14] is used to find $\mathfrak{b}, \mathfrak{c} \sim \mathfrak{a}$.
- Only possible for small discriminants $|\operatorname{disc}(\mathfrak{O})| \le 2^{f/3} \simeq p^{1/3}$.
- PEGASIS: a solution for $|disc(\mathfrak{O})| \simeq p$ but with d = 2.
- We have to compute 4-dimensional isogenies!

Introduction: class group action on oriented curves	Finding isogenies of fixed polarised degree
The Clapoti method	The norm equation
From Clapoti to Pegasis: making it effective and efficient	Kernel points and 4-dimensional isogeny computation
Conclusion	Implementation and performance

From Clapoti to Pegasis: making it effective and efficient

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Step 2: computing Φ_u and Φ_v - sums of squares

Goal: Given $u < 2^{e-2}$ odd and an \mathfrak{D} -oriented curve (E, ι) , compute a *u*-isogeny $\Phi_u : E^2 \longrightarrow A_u$.

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Step 2: computing Φ_u and Φ_v - sums of squares

Goal: Given $u < 2^{e-2}$ odd and an \mathfrak{D} -oriented curve (E, ι) , compute a u-isogeny $\Phi_u : E^2 \longrightarrow A_u$.

Issue: With any *u*, it requires to compute a 4-dimensional isogeny [NO23].

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Step 2: computing Φ_u and Φ_v - sums of squares

Goal: Given $u < 2^{e-2}$ odd and an \mathfrak{D} -oriented curve (E, ι) , compute a u-isogeny $\Phi_u : E^2 \longrightarrow A_u$.

Issue: With any *u*, it requires to compute a 4-dimensional isogeny [NO23].

Idea: Require *u* of special form.

• Assume
$$u = g_u (x_u^2 + y_u^2)$$
.

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Step 2: computing Φ_u and Φ_v - sums of squares

Goal: Given $u < 2^{e-2}$ odd and an \mathfrak{D} -oriented curve (E, ι) , compute a u-isogeny $\Phi_u : E^2 \longrightarrow A_u$.

Issue: With any *u*, it requires to compute a 4-dimensional isogeny [NO23].

Idea: Require *u* of special form.

• Assume
$$u = g_u (x_u^2 + y_u^2)$$
.

• Then, we can define: We can define

$$\Phi_{u} := \begin{pmatrix} x_{u} & -y_{u} \\ y_{u} & x_{u} \end{pmatrix} \begin{pmatrix} \varphi_{u} & 0 \\ 0 & \varphi_{u} \end{pmatrix} : E^{2} \longrightarrow E_{u}^{2}$$

with $\deg(\varphi_u) = g_u$.

- g_u is a product of small primes that split in \mathfrak{O} so that φ_u is given by an ideal action \mathfrak{g}_u .
- Only 1-dimensional computations are involved.

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Step 1: tweaking the norm equation

We want to solve:

$$uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^f$$

with $\mathfrak{b}, \mathfrak{c} \sim \mathfrak{a}, \operatorname{gcd}(uN(\mathfrak{b}), vN(\mathfrak{c})) = 1, f \leq e-2,$

$$u = g_u(x_u^2 + y_u^2) \quad \text{and} \quad v = g_v(x_v^2 + y_v^2).$$

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Step 1: tweaking the norm equation

We want to solve:

$$uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^f$$

with $\mathfrak{b}, \mathfrak{c} \sim \mathfrak{a}, \operatorname{gcd}(uN(\mathfrak{b}), vN(\mathfrak{c})) = 1, f \leq e-2,$

$$u = g_u(x_u^2 + y_u^2) \quad \text{and} \quad v = g_v(x_v^2 + y_v^2).$$

• Issue: This might be to tight to be solved.

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Step 1: tweaking the norm equation

We want to solve:

$$uN(\mathfrak{b}) + vN(\mathfrak{c}) = 2^f$$

with $\mathfrak{b}, \mathfrak{c} \sim \mathfrak{a}, \operatorname{gcd}(uN(\mathfrak{b}), vN(\mathfrak{c})) = 1, f \leq e-2,$

$$u = g_u(x_u^2 + y_u^2)$$
 and $v = g_v(x_v^2 + y_v^2)$.

- **Issue:** This might be to tight to be solved.
- Solution: Let b = b₁ · b₂ and c = c₁ · c₂, where b₁ and c₁ are a product of small prime ideals in D.
- Solve the following instead:

$$uN(\mathfrak{b}_2)+vN(\mathfrak{c}_2)=2^f.$$

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Step 1: an algorithm

Goal: solve $uN(\mathfrak{b}_2) + vN(\mathfrak{c}_2) = 2^f$.

- Sample $\beta, \gamma \in \mathfrak{a}$ as follows:
 - Find a Lagrange-Gauss reduced basis (α_1, α_2) of \mathfrak{a} .
 - Sample small $x, y, z, t \in \mathbb{Z}$ and set $\beta := x\alpha_1 + y\alpha_2$ and $\gamma := z\alpha_1 + t\alpha_2$.

• Set
$$\mathfrak{b} := \mathfrak{a}\overline{\beta}/N(\mathfrak{a})$$
 and $\mathfrak{c} := \mathfrak{a}\overline{\gamma}/N(\mathfrak{a})$.

• Factor
$$\mathfrak{b} = \mathfrak{b}_1 \cdot \mathfrak{b}_2$$
 and $\mathfrak{c} = \mathfrak{c}_1 \cdot \mathfrak{c}_2$.

• Repeat until we can find suitable *u*, *v*.

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Step 1: norm constraints

• By Minkowski's bounds, the Lagrange-Gauss reduced basis satisfies:

 $N(\alpha_1)N(\alpha_2) \simeq N(\mathfrak{a})^2 |\Delta|$

• So we expect $N(\alpha_1) \simeq N(\alpha_2) \simeq N(\mathfrak{a})\sqrt{|\Delta|}$, so that $N(\beta) \simeq N(\gamma) \simeq N(\mathfrak{a})\sqrt{|\Delta|}$ and:

 $N(\mathfrak{a}) \simeq N(\mathfrak{b}) \simeq \sqrt{|\Delta|}.$

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Step 1: norm constraints

• By Minkowski's bounds, the Lagrange-Gauss reduced basis satisfies:

 $N(\alpha_1)N(\alpha_2) \simeq N(\mathfrak{a})^2 |\Delta|$

• So we expect $N(\alpha_1) \simeq N(\alpha_2) \simeq N(\mathfrak{a})\sqrt{|\Delta|}$, so that $N(\beta) \simeq N(\gamma) \simeq N(\mathfrak{a})\sqrt{|\Delta|}$ and:

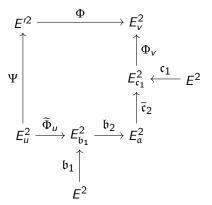
$$N(\mathfrak{a}) \simeq N(\mathfrak{b}) \simeq \sqrt{|\Delta|}.$$

- To solve $uN(\mathfrak{b}_2) + vN(\mathfrak{c}_2) = 2^f$, we need $N(\mathfrak{b}_2)N(\mathfrak{c}_2) \le 2^f \simeq p$.
- We can solve it as long as $|\Delta| \le p$.
- **Example:** In CSURF, $|\Delta| = p$.

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Steps 3-5: applying Kani's lemma

• We have the following $(uN(\mathfrak{b}_2), vN(\mathfrak{c}_2))$ -isogeny diamond:



Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Steps 3-5: applying Kani's lemma

• This isogeny diamond yields a 2^f-isogeny 4-dimensional

$$F = \begin{pmatrix} \Phi_{\mathfrak{b}_2} \circ \widetilde{\Phi}_u & \Phi_{\mathfrak{c}_2} \circ \widetilde{\Phi}_v \\ -\Psi & \widetilde{\Phi} \end{pmatrix} : E_u^2 \times E_v^2 \longrightarrow E_\mathfrak{a}^2 \times E'^2.$$

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Steps 3-5: applying Kani's lemma

• This isogeny diamond yields a 2^f-isogeny 4-dimensional

$$F = \begin{pmatrix} \Phi_{\mathfrak{b}_2} \circ \widetilde{\Phi}_u & \Phi_{\mathfrak{c}_2} \circ \widetilde{\Phi}_v \\ -\Psi & \widetilde{\Phi} \end{pmatrix} : E_u^2 \times E_v^2 \longrightarrow E_\mathfrak{a}^2 \times E'^2.$$

• The 2^{f+2} torsion above ker(F) can be computed by evaluating Φ_u , Φ_v and:

$$\widehat{\varphi}_{\mathfrak{c}_{2}} \circ \varphi_{\mathfrak{b}_{2}} = \frac{1}{N(\mathfrak{b}_{1})N(\mathfrak{c}_{1})} \varphi_{\mathfrak{c}_{1}} \circ \iota\left(\frac{\overline{\beta}\gamma}{N(\mathfrak{a})}\right) \circ \widehat{\varphi}_{\mathfrak{b}_{1}}$$

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Steps 3-5: applying Kani's lemma

• This isogeny diamond yields a 2^f-isogeny 4-dimensional

$$F = \begin{pmatrix} \Phi_{\mathfrak{b}_2} \circ \widetilde{\Phi}_u & \Phi_{\mathfrak{c}_2} \circ \widetilde{\Phi}_v \\ -\Psi & \widetilde{\Phi} \end{pmatrix} : E_u^2 \times E_v^2 \longrightarrow E_\mathfrak{a}^2 \times E'^2.$$

• The 2^{f+2} torsion above ker(F) can be computed by evaluating Φ_u , Φ_v and:

$$\widehat{\varphi}_{\mathfrak{c}_{2}} \circ \varphi_{\mathfrak{b}_{2}} = \frac{1}{N(\mathfrak{b}_{1})N(\mathfrak{c}_{1})} \varphi_{\mathfrak{c}_{1}} \circ \iota\left(\frac{\overline{\beta}\gamma}{N(\mathfrak{a})}\right) \circ \widehat{\varphi}_{\mathfrak{b}_{1}}$$

• F can then be computed efficiently with theta coordinates [Dar24].

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Steps 3-5: applying Kani's lemma

• This isogeny diamond yields a 2^f-isogeny 4-dimensional

$$F = \begin{pmatrix} \Phi_{\mathfrak{b}_2} \circ \widetilde{\Phi}_u & \Phi_{\mathfrak{c}_2} \circ \widetilde{\Phi}_v \\ -\Psi & \widetilde{\Phi} \end{pmatrix} : E_u^2 \times E_v^2 \longrightarrow E_\mathfrak{a}^2 \times E'^2.$$

• The 2^{f+2} torsion above ker(F) can be computed by evaluating Φ_u , Φ_v and:

$$\widehat{\varphi}_{\mathfrak{c}_{2}} \circ \varphi_{\mathfrak{b}_{2}} = \frac{1}{N(\mathfrak{b}_{1})N(\mathfrak{c}_{1})} \varphi_{\mathfrak{c}_{1}} \circ \iota\left(\frac{\overline{\beta}\gamma}{N(\mathfrak{a})}\right) \circ \widehat{\varphi}_{\mathfrak{b}_{1}}$$

- F can then be computed efficiently with theta coordinates [Dar24].
- We can then extract $E_{\mathfrak{a}}$ from the codomain $E_{\mathfrak{a}}^2 \times E'^2$.

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Steps 3-5: applying Kani's lemma

• This isogeny diamond yields a 2^f-isogeny 4-dimensional

$$F = \begin{pmatrix} \Phi_{\mathfrak{b}_2} \circ \widetilde{\Phi}_u & \Phi_{\mathfrak{c}_2} \circ \widetilde{\Phi}_v \\ -\Psi & \widetilde{\Phi} \end{pmatrix} : E_u^2 \times E_v^2 \longrightarrow E_\mathfrak{a}^2 \times E'^2.$$

• The 2^{f+2} torsion above ker(F) can be computed by evaluating Φ_u , Φ_v and:

$$\widehat{\varphi}_{\mathfrak{c}_{2}} \circ \varphi_{\mathfrak{b}_{2}} = \frac{1}{N(\mathfrak{b}_{1})N(\mathfrak{c}_{1})} \varphi_{\mathfrak{c}_{1}} \circ \iota\left(\frac{\overline{\beta}\gamma}{N(\mathfrak{a})}\right) \circ \widehat{\varphi}_{\mathfrak{b}_{1}}$$

- F can then be computed efficiently with theta coordinates [Dar24].
- We can then extract $E_{\mathfrak{a}}$ from the codomain $E_{\mathfrak{a}}^2 \times E'^2$.
- The orientation ι_a := (φ_a)_{*}ι on E_a can be evaluated with F (unnecessary for CSURF).

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Implementation for CSURF

Parameter set Step 1 (s)		Step 2-3 (s)	Steps 4-5 (s)	Total (s)	
500	0.097	0.477	0.960	1.534	
1000	0.212	1.159	2.838	4.210	
1500	1.186	2.853	6.491	10.530	
2000	1.675	8.337	11.327	21.339	
4000	15.606	52.808	53.463	121.876	

Table: SageMath 10.5 timings in sec on Intel Core i5-1235U. Step 1 is the time to solve the norm equation, Steps 2-3 the time to compute all required 1-dimensional isogenies, and Steps 4-5 the time to compute the 4-dimensional isogeny.

Finding isogenies of fixed polarised degree The norm equation Kernel points and 4-dimensional isogeny computation Implementation and performance

Comparison with state of the art

Paper	Impl.	500	1000	1500	2000	4000
SCALLOP [FFK+23]*	C++	35s	12m30s	_	_	_
SCALLOP-HD [CLP24]*	Sage	88s	19m	-	-	-
PEARL-SCALLOP [ABE+24]	C++	30s	58s	12m	-	-
KLaPoTi [PPS24]	Sage	200s	-	-	-	_
	Rust	1.95s	-	-	-	-
PEGASIS (This work)	Sage	1.53s	4.21s	10.5s	21.3s	2m2s

Table: Comparison between PEGASIS and other effective group actions in the literature. The last 5 columns gives the timings corresponding to the different security levels, where s/m gives the number of seconds/minutes in wall-clock time. SCALLOP and SCALLOP-HD are starred because they were measured on a different hardware setup.

Conclusion

To sum up:

- We now have an unrestricted group action which is efficient in practice.
- Made possible with the use of 4-dimensional isogenies.

Conclusion

To sum up:

- We now have an unrestricted group action which is efficient in practice.
- Made possible with the use of 4-dimensional isogenies.

Future works/open questions:

- Need to implement 4-dimensional isogenies in C and/or Rust.
- CSURF was efficient because computations were done over 𝔽_p. Need to better understand 4-dimensional isogeny computations over 𝔽_p.
- Could we do better in dimension 2?
- What can be done when $|\operatorname{disc}(\mathfrak{O})| \gg p$?

Thanks for listening!

P. Dartois, J. Komada Eriksen, T. B. Fouotsa, A. Herlédan Le Merdy, R. Invernizzi, D. Robert, R. Rueger, F. Vercauteren and B. Wesolowski. PEGASIS: Practical Effective Class Group Action using 4-Dimensional Isogenies. e-Print https://eprint.iacr.org/2023/436

Further algorithmic details

Goal: Given $u < 2^{e-2}$ odd and an \mathfrak{D} -oriented curve (E, ι) , compute a u-isogeny $\Phi_u : E^2 \longrightarrow A_u$.

• A method inspired from QFESTA [NO23].

Goal: Given $u < 2^{e-2}$ odd and an \mathfrak{O} -oriented curve (E, ι) , compute a u-isogeny $\Phi_u : E^2 \longrightarrow A_u$.

- A method inspired from QFESTA [NO23].
- Let $\Delta := \operatorname{disc}(\mathfrak{O})$ and assume $u(2^f u) := \Omega(|\Delta| \log(|\Delta|))$ (with $f \le e 2$).
- Solve:

$$x^2 + z^2 + |\Delta| \big(y^2 + t^2 \big) = u \big(2^f - u \big),$$

with $x, y, z, t \in \mathbb{Z}$.

Goal: Given $u < 2^{e-2}$ odd and an \mathfrak{O} -oriented curve (E, ι) , compute a u-isogeny $\Phi_u : E^2 \longrightarrow A_u$.

- A method inspired from QFESTA [NO23].
- Let $\Delta := \operatorname{disc}(\mathfrak{O})$ and assume $u(2^f u) := \Omega(|\Delta| \log(|\Delta|))$ (with $f \le e 2$).
- Solve:

$$x^2 + z^2 + |\Delta| (y^2 + t^2) = u(2^f - u),$$

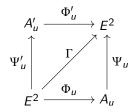
with $x, y, z, t \in \mathbb{Z}$.

• Let $\gamma_1 := x + \sqrt{\Delta}y, \gamma_2 := z + \sqrt{\Delta}t \in \mathfrak{O}$ and:

$$\Gamma := \begin{pmatrix} \iota(\gamma_1) & \iota(\overline{\gamma}_2) \\ -\iota(\gamma_2) & \iota(\overline{\gamma}_1) \end{pmatrix} \in \operatorname{End}(E^2).$$

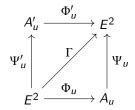
• Then $\widetilde{\Gamma} \circ \Gamma := [N(\gamma_1) + N(\gamma_2)] = u(2^f - u).$

• Consider the isogeny diamond:



with $deg(\Phi_u) = u$ and $deg(\Psi_u) = 2^f - u$.

• Consider the isogeny diamond:

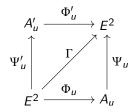


with $deg(\Phi_u) = u$ and $deg(\Psi_u) = 2^f - u$.

• By Kani's lemma, it induces a 2^f-isogeny

$$F_u := \begin{pmatrix} \Phi_u & \widetilde{\Psi}_u \\ -\Psi'_u & \widetilde{\Phi'}_u \end{pmatrix} \colon E^2 \longrightarrow A_u \times A'_u,$$

• Consider the isogeny diamond:



with $deg(\Phi_u) = u$ and $deg(\Psi_u) = 2^f - u$.

• By Kani's lemma, it induces a 2^f-isogeny

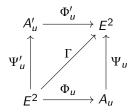
$$F_u := \begin{pmatrix} \Phi_u & \widetilde{\Psi}_u \\ -\Psi'_u & \widetilde{\Phi'}_u \end{pmatrix} \colon E^2 \longrightarrow A_u \times A'_u,$$

• With kernel:

$$\ker(F_u) = \{ ([u]P, [u]Q, \Gamma(P, Q))$$
$$| P, Q \in E[2^f] \}.$$

• Knowing ι , we can compute 2^{f+2} -torsion above ker(F_u) and F_u .

• Consider the isogeny diamond:



with $deg(\Phi_u) = u$ and $deg(\Psi_u) = 2^f - u$.

• By Kani's lemma, it induces a 2^f-isogeny

$$F_u := \begin{pmatrix} \Phi_u & \widetilde{\Psi}_u \\ -\Psi'_u & \widetilde{\Phi'}_u \end{pmatrix} \colon E^2 \longrightarrow A_u \times A'_u,$$

• With kernel:

$$\ker(F_u) = \{ ([u]P, [u]Q, \Gamma(P, Q)) \\ | P, Q \in E[2^f] \}.$$

- Knowing ι , we can compute 2^{f+2} -torsion above ker(F_u) and F_u .
- F_u represents Φ_u .

Step 1: rerandomization

Issue: What happens when $N(\alpha_1) \ll N(\alpha_2)$?

Step 1: rerandomization

Issue: What happens when $N(\alpha_1) \ll N(\alpha_2)$?

Solution:

- Replace \mathfrak{a} by \mathfrak{la} for a small prime ideal \mathfrak{l} .
- Replace *E* by $E_{\overline{l}}$.
- Repeat until $N(\alpha_1) \simeq N(\alpha_2)$ (for the new ideal \mathfrak{a}).