
Introduction: class group action on oriented curves
The Clapoti method

From Clapoti to Pegasis: making it effective and efficient
Conclusion

Practical Effective Class Group Action using
4-Dimensional Isogenies

Pierrick Dartois, Jonathan Komada Eriksen, Tako Boris Fouotsa,
Arthur Herlédan Le Merdy, Riccardo Invernizzi, Damien Robert, Ryan

Rueger, Frederik Vercauteren and Benjamin Wesolowski

2025, April 30

P. Dartois PEGASIS 1 / 31



Introduction: class group action on oriented curves
The Clapoti method

From Clapoti to Pegasis: making it effective and efficient
Conclusion

1 Introduction: class group action on oriented curves

2 The Clapoti method

3 From Clapoti to Pegasis: making it effective and efficient

P. Dartois PEGASIS 2 / 31



Introduction: class group action on oriented curves
The Clapoti method

From Clapoti to Pegasis: making it effective and efficient
Conclusion

Orientations
Effective group actions

Introduction: class group action on oriented curves

P. Dartois PEGASIS 3 / 31



Introduction: class group action on oriented curves
The Clapoti method

From Clapoti to Pegasis: making it effective and efficient
Conclusion

Orientations
Effective group actions

Orientations

Let O be a quadratic imaginary order.

Let E/Fp2 be a supersingular elliptic curve. A (primitive)
O-orientation of E is an embedding:

ι :O ,→End(E )

that is maximal (it does not extend to a superorder of O).

We say that (E , ι) is O-oriented.

P. Dartois PEGASIS 4 / 31



Introduction: class group action on oriented curves
The Clapoti method

From Clapoti to Pegasis: making it effective and efficient
Conclusion

Orientations
Effective group actions

Orientations

Let O be a quadratic imaginary order.

Let E/Fp2 be a supersingular elliptic curve. A (primitive)
O-orientation of E is an embedding:

ι :O ,→End(E )

that is maximal (it does not extend to a superorder of O).

We say that (E , ι) is O-oriented.

P. Dartois PEGASIS 4 / 31



Introduction: class group action on oriented curves
The Clapoti method

From Clapoti to Pegasis: making it effective and efficient
Conclusion

Orientations
Effective group actions

Orientations

Cl(O) acts faithfully and (almost) transitively on the set of
O-oriented curves.

An ideal a⊆O corresponds to an isogeny ϕa :E −→Ea of kernel:

E [a] := {P ∈E | ∀α ∈ a, ι(α)(P)= 0}

There is also an O-orientation

ιa := (ϕa)∗(ι) :α 7−→ 1
N(a)

ϕa ◦ ι(α)◦ ϕ̂a

on Ea.

The action is trivial (E , ι)≃ (Ea, ιa) if and only if a is principal.
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Example: CSIDH and CSURF

Let p ≡ 7 mod 8. Consider a supersingular Montgomery curve

E : y2 = x3+Ax2+x

with A ∈ Fp.
Then EndFp (E ) contains the Frobenius endomorphism

πp : (x ,y) ∈E 7−→ (xp ,yp) ∈E ,

which satisfies π2
p =−[p].

Hence E is Z[p−p]-oriented:

Z[
p−p] ,→ EndFp (E )p−p 7−→ πp

.

This orientation is not always primitive: there are two cases.
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Example: CSIDH and CSURF

E is either:
On the surface: primitively Z[(1+p−p)/2]-oriented (CSURF).
On the floor: primitively Z[p−p]-oriented (CSIDH).

Z[
p−p]

Z
[
1+p−p

2

]

2-isogenies
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Effective group action

Definition

An effective group action (EGA) G æX is:
1 Commutative.
2 Free: ∀x ∈X ,g ∈G , g ·x = x =⇒ g = e.
3 Transitive: ∀x ,y ∈X , ∃g ∈G , g ·x = y .
4 Easy to compute: g ·x can be evaluated in polynomial time for all

g ∈G and x ∈X .
5 One way: given x and g ·x , g ∈G is hard to find.

With effective group actions, we can derive many schemes (including
key exchange, signatures and more).

P. Dartois PEGASIS 8 / 31



Introduction: class group action on oriented curves
The Clapoti method

From Clapoti to Pegasis: making it effective and efficient
Conclusion

Orientations
Effective group actions

Effective group action

Definition

An effective group action (EGA) G æX is:
1 Commutative.
2 Free: ∀x ∈X ,g ∈G , g ·x = x =⇒ g = e.
3 Transitive: ∀x ,y ∈X , ∃g ∈G , g ·x = y .
4 Easy to compute: g ·x can be evaluated in polynomial time for all

g ∈G and x ∈X .
5 One way: given x and g ·x , g ∈G is hard to find.

With effective group actions, we can derive many schemes (including
key exchange, signatures and more).

P. Dartois PEGASIS 8 / 31



Introduction: class group action on oriented curves
The Clapoti method

From Clapoti to Pegasis: making it effective and efficient
Conclusion

Orientations
Effective group actions

Restricted effective group actions

Actually, group actions based on orientations are restricted effective
group actions. We can act by ideals of small norms l1, · · · , lt that
generate Cl(O).

To act with the whole of Cl(O) we consider products

a=
t∏

i=1
leii .

" Issue: it is non trivial (and not very efficient) to sample uniform
classes in Cl(O) with such products, as required in some protocols
(e.g. CSI-FiSh).
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d -isogenies and the dual isogeny in higher dimension

Definition (d-isogeny)

Let ϕ : (A,λA)−→ (B ,λB) be an isogeny between two principally
polarized abelian varieties (PPAV). We define:

ϕ̃ :=λ−1
A ◦ ϕ̂◦λB :B −→A.

B
λB−→ B̂

ϕ̂−→ Â
λ−1
A−→A

We say that ϕ is a d-isogeny or has polarized degree d if ϕ̃◦ϕ= [d ]A.
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Kani’s embedding lemma [Kan97]

Definition (isogeny diamond)

An (a,b)-isogeny diamond is
a commutative diagram s.t.:

A′ ϕ′
// B ′

A

ψ

OO

ϕ // B

ψ′
OO

where ϕ,ϕ′ are a-isogenies
and ψ,ψ′ are b-isogenies.

Lemma (Kani)

Consider the (a,b)-isogeny diamond on the
left. Then:

F :A×B ′ −→B ×A′,

F :=
(
ϕ ψ̃′
−ψ ϕ̃′

)
is a d-isogeny with d = a+b.
If a∧b = 1, then

ker(F )= {(ϕ̃(x),ψ′(x)) | x ∈B[d ]}.
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Computing 2e-isogenies

Theorem (D. and Robert)

Let k be a field such that char(k) ̸= 2. Then there exists an algorithm
that takes as input:

A principally polarised abelian variety A of dimension g defined
over k ;
Points T1, · · · ,Tg ∈A[2e+2] defined over k forming a maximal
isotropic subgroup of A[2e+2];

And returns a 2e -isogeny F :A−→B with kernel 〈[4]T1, · · · , [4]Tg 〉
represented as a chain of 2-isogenies with a number of operations over k
polynomial in e and 2g .
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The Clapoti method

Goal: Compute Ea for any a⊆O.

Assumption: p = c2e −1.

We solve:

uN(b)+vN(c)= 2f ,

with b,c∼ a, f ≤ e−2 and
gcd(uN(b),vN(c))= 1.
If Φu and Φv are d-dimensional,
the resulting Kani 2f -isogeny

F :Au ×Av −→Ed
a ×A′

is 2d-dimensional.

Au Ed

A′

Ed
a

Ed

Av

Ψ

Φ̃u b

c

Φv

Φ
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The Clapoti method - Outline

Goal: Compute Ea for any ideal a⊆O and O-oriented curve (E , ι).

Assumption: p = c2e −1.

Step 1: Find ideals b,c∼ a and u,v ∈N such that
gcd(uN(b),vN(c))= 1 and

uN(b)+vN(c)= 2f (f ≤ e−2).

Step 2: Compute a u-isogeny Φu :E
d −→Au and a v -isogeny

Φv :E
d −→Av in dimension d .

Step 3: Evaluate the endomorphism of E associated to bc.
Step 4: Compute a 2d-dimensional isogeny F :Av ×Av −→Ed

a ×A′
embedding ϕb,ϕc,Φu ,Φv .

Step 5: Extract Ea from the codomain Ed
a ×A′.
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Introduction: class group action on oriented curves
The Clapoti method

From Clapoti to Pegasis: making it effective and efficient
Conclusion

Kani’s embedding lemma
Computing higher dimensional isogenies
Clapoti

The Clapoti method - Outline

Goal: Compute Ea for any ideal a⊆O and O-oriented curve (E , ι).

Assumption: p = c2e −1.

Step 1: Find ideals b,c∼ a and u,v ∈N such that
gcd(uN(b),vN(c))= 1 and

uN(b)+vN(c)= 2f (f ≤ e−2).

Step 2: Compute a u-isogeny Φu :E
d −→Au and a v -isogeny

Φv :E
d −→Av in dimension d .

Step 3: Evaluate the endomorphism of E associated to bc.
Step 4: Compute a 2d-dimensional isogeny F :Av ×Av −→Ed

a ×A′
embedding ϕb,ϕc,Φu ,Φv .

Step 5: Extract Ea from the codomain Ed
a ×A′.

P. Dartois PEGASIS 15 / 31



Introduction: class group action on oriented curves
The Clapoti method

From Clapoti to Pegasis: making it effective and efficient
Conclusion

Kani’s embedding lemma
Computing higher dimensional isogenies
Clapoti

The Clapoti method - Outline

Goal: Compute Ea for any ideal a⊆O and O-oriented curve (E , ι).

Assumption: p = c2e −1.

Step 1: Find ideals b,c∼ a and u,v ∈N such that
gcd(uN(b),vN(c))= 1 and

uN(b)+vN(c)= 2f (f ≤ e−2).

Step 2: Compute a u-isogeny Φu :E
d −→Au and a v -isogeny

Φv :E
d −→Av in dimension d .

Step 3: Evaluate the endomorphism of E associated to bc.
Step 4: Compute a 2d-dimensional isogeny F :Av ×Av −→Ed

a ×A′
embedding ϕb,ϕc,Φu ,Φv .

Step 5: Extract Ea from the codomain Ed
a ×A′.

P. Dartois PEGASIS 15 / 31



Introduction: class group action on oriented curves
The Clapoti method

From Clapoti to Pegasis: making it effective and efficient
Conclusion

Kani’s embedding lemma
Computing higher dimensional isogenies
Clapoti

The Clapoti method - Outline

Goal: Compute Ea for any ideal a⊆O and O-oriented curve (E , ι).

Assumption: p = c2e −1.

Step 1: Find ideals b,c∼ a and u,v ∈N such that
gcd(uN(b),vN(c))= 1 and

uN(b)+vN(c)= 2f (f ≤ e−2).

Step 2: Compute a u-isogeny Φu :E
d −→Au and a v -isogeny

Φv :E
d −→Av in dimension d .

Step 3: Evaluate the endomorphism of E associated to bc.

Step 4: Compute a 2d-dimensional isogeny F :Av ×Av −→Ed
a ×A′

embedding ϕb,ϕc,Φu ,Φv .
Step 5: Extract Ea from the codomain Ed

a ×A′.

P. Dartois PEGASIS 15 / 31



Introduction: class group action on oriented curves
The Clapoti method

From Clapoti to Pegasis: making it effective and efficient
Conclusion

Kani’s embedding lemma
Computing higher dimensional isogenies
Clapoti

The Clapoti method - Outline

Goal: Compute Ea for any ideal a⊆O and O-oriented curve (E , ι).

Assumption: p = c2e −1.

Step 1: Find ideals b,c∼ a and u,v ∈N such that
gcd(uN(b),vN(c))= 1 and

uN(b)+vN(c)= 2f (f ≤ e−2).

Step 2: Compute a u-isogeny Φu :E
d −→Au and a v -isogeny

Φv :E
d −→Av in dimension d .

Step 3: Evaluate the endomorphism of E associated to bc.
Step 4: Compute a 2d-dimensional isogeny F :Av ×Av −→Ed

a ×A′
embedding ϕb,ϕc,Φu ,Φv .

Step 5: Extract Ea from the codomain Ed
a ×A′.

P. Dartois PEGASIS 15 / 31



Introduction: class group action on oriented curves
The Clapoti method

From Clapoti to Pegasis: making it effective and efficient
Conclusion

Kani’s embedding lemma
Computing higher dimensional isogenies
Clapoti

The auxiliary isogenies Φu and Φv

Φu and Φv are hard to compute in dimension d = 1.

In KlaPoTi [PPS24], they impose u = v = 1:

N(b)+N(c)= 2f .

KLPT [KLPT14] is used to find b,c∼ a.

Only possible for small discriminants |disc(O)| ≤ 2f /3 ≃ p1/3.

PEGASIS: a solution for |disc(O)| ≃ p but with d = 2.
We have to compute 4-dimensional isogenies!
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Implementation and performance

From Clapoti to Pegasis: making it effective and
efficient
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Finding isogenies of fixed polarised degree
The norm equation
Kernel points and 4-dimensional isogeny computation
Implementation and performance

Step 2: computing Φu and Φv - sums of squares
Goal: Given u < 2e−2 odd and an O-oriented curve (E , ι), compute a
u-isogeny Φu :E

2 −→Au.

Issue: With any u, it requires to compute a 4-dimensional isogeny
[NO23].
Idea: Require u of special form.

Assume u = gu(x
2
u +y2

u ).
Then, we can define: We can define

Φu :=
(
xu −yu
yu xu

)(
ϕu 0
0 ϕu

)
:E2 −→E2

u

with deg(ϕu)= gu.
gu is a product of small primes that split in O so that ϕu is given by
an ideal action gu.
Only 1-dimensional computations are involved.

P. Dartois PEGASIS 18 / 31
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Finding isogenies of fixed polarised degree
The norm equation
Kernel points and 4-dimensional isogeny computation
Implementation and performance

Step 1: tweaking the norm equation

We want to solve:
uN(b)+vN(c)= 2f

with b,c∼ a, gcd(uN(b),vN(c))= 1, f ≤ e−2,

u = gu(x
2
u +y2

u ) and v = gv (x
2
v +y2

v ).

Issue: This might be to tight to be solved.

Solution: Let b= b1 ·b2 and c= c1 · c2, where b1 and c1 are a
product of small prime ideals in O.

Solve the following instead:

uN(b2)+vN(c2)= 2f .

P. Dartois PEGASIS 19 / 31
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Finding isogenies of fixed polarised degree
The norm equation
Kernel points and 4-dimensional isogeny computation
Implementation and performance

Step 1: an algorithm

Goal: solve uN(b2)+vN(c2)= 2f .

Sample β,γ ∈ a as follows:
Find a Lagrange-Gauss reduced basis (α1,α2) of a.
Sample small x ,y ,z ,t ∈Z and set β := xα1+yα2 and γ := zα1+ tα2.

Set b := aβ/N(a) and c := aγ/N(a).

Factor b= b1 ·b2 and c= c1 · c2.
Repeat until we can find suitable u,v .

P. Dartois PEGASIS 20 / 31
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Finding isogenies of fixed polarised degree
The norm equation
Kernel points and 4-dimensional isogeny computation
Implementation and performance

Step 1: norm constraints

By Minkowski’s bounds, the Lagrange-Gauss reduced basis satisfies:

N(α1)N(α2)≃N(a)2|∆|

So we expect N(α1)≃N(α2)≃N(a)
p|∆|, so that

N(β)≃N(γ)≃N(a)
p|∆| and:

N(a)≃N(b)≃
√

|∆|.

To solve uN(b2)+vN(c2)= 2f , we need N(b2)N(c2)≤ 2f ≃ p.

We can solve it as long as |∆| ≤ p.

Example: In CSURF, |∆| = p.
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Steps 3-5: applying Kani’s lemma

We have the following (uN(b2),vN(c2))-isogeny diamond:

E2
u E2

b1

E2

E ′2

E2
a

E2
c1 E2

E2
v

Ψ

Φ̃u

b1

b2

c2

c1

Φv

Φ
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Steps 3-5: applying Kani’s lemma

This isogeny diamond yields a 2f -isogeny 4-dimensional

F =
(
Φb2 ◦ Φ̃u Φc2 ◦ Φ̃v

−Ψ Φ̃

)
:E2

u ×E2
v −→E2

a ×E ′2.

The 2f +2 torsion above ker(F ) can be computed by evaluating Φu,
Φv and:

ϕ̂c2 ◦ϕb2 =
1

N(b1)N(c1)
ϕc1 ◦ ι

(
βγ

N(a)

)
◦ ϕ̂b1

F can then be computed efficiently with theta coordinates [Dar24].

We can then extract Ea from the codomain E2
a ×E ′2.

The orientation ιa := (ϕa)∗ι on Ea can be evaluated with F
(unnecessary for CSURF).
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Implementation for CSURF

Parameter set Step 1 (s) Step 2-3 (s) Steps 4-5 (s) Total (s)

500 0.097 0.477 0.960 1.534
1000 0.212 1.159 2.838 4.210
1500 1.186 2.853 6.491 10.530
2000 1.675 8.337 11.327 21.339
4000 15.606 52.808 53.463 121.876

Table: SageMath 10.5 timings in sec on Intel Core i5-1235U. Step 1 is the time
to solve the norm equation, Steps 2-3 the time to compute all required
1-dimensional isogenies, and Steps 4-5 the time to compute the 4-dimensional
isogeny.
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Comparison with state of the art

Paper Impl. 500 1000 1500 2000 4000

SCALLOP [FFK+23]* C++ 35s 12m30s – – –
SCALLOP-HD [CLP24]* Sage 88s 19m – – –

PEARL-SCALLOP [ABE+24] C++ 30s 58s 12m – –

KLaPoTi [PPS24]
Sage 200s – – – –
Rust 1.95s – – – –

PEGASIS (This work) Sage 1.53s 4.21s 10.5s 21.3s 2m2s

Table: Comparison between PEGASIS and other effective group actions in the
literature. The last 5 columns gives the timings corresponding to the different
security levels, where s/m gives the number of seconds/minutes in wall-clock
time. SCALLOP and SCALLOP-HD are starred because they were measured
on a different hardware setup.
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Conclusion

To sum up:

We now have an unrestricted group action which is efficient in
practice.

Made possible with the use of 4-dimensional isogenies.

Future works/open questions:

Need to implement 4-dimensional isogenies in C and/or Rust.

CSURF was efficient because computations were done over Fp. Need
to better understand 4-dimensional isogeny computations over Fp.

Could we do better in dimension 2?

What can be done when |disc(O)|≫ p?
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Thanks for listening!

P. Dartois, J. Komada Eriksen, T. B. Fouotsa, A. Herlédan Le Merdy, R. Invernizzi, D. Robert,
R. Rueger, F. Vercauteren and B. Wesolowski. PEGASIS: Practical Effective Class Group
Action using 4-Dimensional Isogenies. e-Print https://eprint.iacr.org/2023/436

P. Dartois PEGASIS 27 / 31

https://eprint.iacr.org/2023/436


Further algorithmic details

Further algorithmic details

P. Dartois PEGASIS 28 / 31



Further algorithmic details

Step 2: computing Φu and Φv - general case

Goal: Given u < 2e−2 odd and an O-oriented curve (E , ι), compute a
u-isogeny Φu :E

2 −→Au.

A method inspired from QFESTA [NO23].

Let ∆ := disc(O) and assume u(2f −u) :=Ω(|∆| log(|∆|)) (with
f ≤ e−2).
Solve:

x2+z2+|∆|(y2+ t2)= u(2f −u),

with x ,y ,z ,t ∈Z.
Let γ1 := x +p

∆y ,γ2 := z +p
∆t ∈O and:

Γ :=
(

ι(γ1) ι(γ2)
−ι(γ2) ι(γ1)

)
∈End(E2).

Then Γ̃◦Γ := [N(γ1)+N(γ2)]= u(2f −u).
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Further algorithmic details

Step 2: computing Φu and Φv - general case

Consider the isogeny
diamond:

E2

A′
u E2

Au
Φu

ΨuΨ′
u

Φ′
u

Γ

with deg(Φu)= u and
deg(Ψu)= 2f −u.

By Kani’s lemma, it induces a
2f -isogeny

Fu :=
(
Φu Ψ̃u

−Ψ′
u Φ̃′

u

)
: E2 −→Au ×A′

u ,

With kernel:

ker(Fu)= {([u]P , [u]Q ,Γ(P ,Q))

|P ,Q ∈E [2f ]}.

Knowing ι, we can compute
2f +2-torsion above ker(Fu) and Fu.
Fu represents Φu.
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Further algorithmic details

Step 1: rerandomization

Issue: What happens when N(α1)≪N(α2)?

Solution:

Replace a by la for a small prime ideal l.

Replace E by El.

Repeat until N(α1)≃N(α2) (for the new ideal a).
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