Recent wor

Field Theor Perspective

Future Direction

Generalized class group actions via class field theory

Eli Orvis

University of Colorado Boulder

April 30, 2025

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction

Agenda

Recent work

Field Theory Perspective

Future Direction

Class group actions are useful tools in cryptography.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction

Agenda

Recent work

Field Theory Perspective

Future Direction

Class group actions are useful tools in cryptography. **1** CSIDH

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Introduction

Agenda

Recent work

Field Theory Perspective

Future Direction

Class group actions are useful tools in cryptography. **1** CSIDH

1 $Cl_{\mathcal{O}}$ -action on supersingular curves over \mathbb{F}_p

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Introduction

Agenda

Recent work

Field Theory Perspective

Future Direction

Class group actions are useful tools in cryptography. **1** CSIDH

Cl_O-action on supersingular curves over F_p
SCALLOP

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Agenda

Recent work

Field Theory Perspective

Future Direction

Class group actions are useful tools in cryptography. **1** CSIDH

1 $\operatorname{Cl}_{\mathcal{O}}$ -action on supersingular curves over \mathbb{F}_p

2 SCALLOP

1 Class group actions by non-maximal orders

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Agenda

Recent work

Field Theory Perspective

Future Direction

Class group actions are useful tools in cryptography. **1** CSIDH

1 $\operatorname{Cl}_{\mathcal{O}}$ -action on supersingular curves over \mathbb{F}_p

2 SCALLOP

1 Class group actions by non-maximal orders

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction

Agenda

Recent work

Field Theor Perspective

Future Direction For isogenists, level structures are also useful.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction

Agenda

Recent work

Field Theor Perspective

Future Directions For isogenists, level structures are also useful.

SIDH attacks

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction

- Agenda
- Recent work
- Field Theor Perspective

Future Directions For isogenists, level structures are also useful.

- SIDH attacks
- 2 Conceptualizing isogeny problems ...

Г	Best attack	Schemes
$\binom{1}{1}$	poly	SIDH
$\binom{1}{1}{1}{1}$	poly	[16,21]
$\begin{pmatrix} \lambda \\ \lambda \end{pmatrix}$	exp	M-SIDH
(* .)	\exp	FESTA, binSIDH, CSIDH, SCALLOP
(**)	exp	SIDH PoKs
SL_2	exp	generic

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introductior

Agenda

Recent work

Field Theory Perspective

Future Direction Recent work by various authors, combines these concepts, to look at *class group actions on elliptic curves with level structure*.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Introductior

Agenda

Recent work

Field Theory Perspective

Future Directions Recent work by various authors, combines these concepts, to look at *class group actions on elliptic curves with level structure*.

Our agenda:

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Introductior

Agenda

Recent work

Field Theory Perspective

Future Directions Recent work by various authors, combines these concepts, to look at *class group actions on elliptic curves with level structure*.

Our agenda:

1 Review recent results,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introductior

Agenda

Recent work

Field Theory Perspective

Future Directions Recent work by various authors, combines these concepts, to look at *class group actions on elliptic curves with level structure*.

Our agenda:

- 1 Review recent results,
- 2 Propose an alternative framework,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Agenda

Recent work

Field Theory Perspective

Future Directions Recent work by various authors, combines these concepts, to look at *class group actions on elliptic curves with level structure*.

Our agenda:

- 1 Review recent results,
- 2 Propose an alternative framework,
- 8 Explore.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction

Agenda

Recent work

Field Theory Perspective

Future Directions Recent work by various authors, combines these concepts, to look at *class group actions on elliptic curves with level structure*.

Our agenda:

1 Review recent results,

2 Propose an alternative framework,

3 Explore.

Joint work (in progress) with Sarah Arpin, Joseph Macula.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Introduction

Agenda

Recent work

Field Theor Perspective

Future Direction

First, some definitions:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introductio

Agenda

Recent work

Field Theory Perspective

Future Directions

First, some definitions:

Definition

An *orientation* is an embedding $\mathcal{O} \hookrightarrow \text{End}(E)$.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Introductio

Recent work

Field Theory Perspective

Future Directions

First, some definitions:

Definition

An orientation is an embedding $\mathcal{O} \hookrightarrow \text{End}(E)$. An orientation is primitive if it cannot be extended.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

introductio

Recent work

Field Theor Perspective

Future Directions

First, some definitions:

Definition

An orientation is an embedding $\mathcal{O} \hookrightarrow \text{End}(E)$. An orientation is primitive if it cannot be extended.

Definition

For $\Gamma \leq \operatorname{GL}_2(\mathbb{Z}/N\mathbb{Z})$, a Γ -level structure on E is an isomorphism

$$\Phi: (\mathbb{Z}/N\mathbb{Z})^2 \to E[N],$$

up to pre-composition by an element of Γ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

.....

Recent work

Field Theor Perspective

Future Direction In 2023, GPS proposed a cryptosystem based on CSIDH with *full level N structure.*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Agondo

Recent work

Field Theor Perspective

Future Direction In 2023, GPS proposed a cryptosystem based on CSIDH with *full level N structure.*

Full level structure means that we take $\Gamma = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$. In other words, we specify a basis of E[N].

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Recent work

Field Theor Perspective

Future Directions To find an appropriate class group they use:

 $Cl_{N}(\mathcal{O}) = \frac{\{\text{frac. ideals coprime to } N\}}{\{\text{princ. frac. ideals } \alpha \mathcal{O}, \ \alpha \equiv 1 \pmod{N}\}}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Recent work

Field Theory Perspective

Future Directions To find an appropriate class group they use:

$$Cl_{N}(\mathcal{O}) = \frac{\{\text{frac. ideals coprime to } N\}}{\{\text{princ. frac. ideals } \alpha \mathcal{O}, \ \alpha \equiv 1 \pmod{N}\}}$$

Notes:

1 The class group action is still free, but not transitive.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Recent work

Field Theory Perspective

Future Directions To find an appropriate class group they use:

$$Cl_{N}(\mathcal{O}) = \frac{\{\text{frac. ideals coprime to } N\}}{\{\text{princ. frac. ideals } \alpha \mathcal{O}, \ \alpha \equiv 1 \pmod{N}\}}$$

Notes:

1 The class group action is still free, but not transitive.

2 This does not improve security.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

. . .

Recent work

Field Theory Perspective

Future Directions PV studied ordinary elliptic curves with $\Gamma_0(N)$, $\Gamma_1(N)$, and $\Gamma(N)$ level structures.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Recent work

Field Theor Perspective

Future Direction PV studied ordinary elliptic curves with $\Gamma_0(N)$, $\Gamma_1(N)$, and $\Gamma(N)$ level structures.

1 Count the size of craters in terms of $\ell \in Cl(\mathcal{O})$,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

. . .

Recent work

Field Theor Perspective

Future Direction PV studied ordinary elliptic curves with $\Gamma_0(N)$, $\Gamma_1(N)$, and $\Gamma(N)$ level structures.

- **1** Count the size of craters in terms of $\ell \in Cl(\mathcal{O})$,
- Obtain generalized class groups acting on each type of level structure.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

. . .

Recent work

Field Theory Perspective

Future Direction PV studied ordinary elliptic curves with $\Gamma_0(N)$, $\Gamma_1(N)$, and $\Gamma(N)$ level structures.

- **1** Count the size of craters in terms of $\ell \in Cl(\mathcal{O})$,
- Obtain generalized class groups acting on each type of level structure. Use *I*_O(*N*) modulo

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

. .

Recent work

Field Theory Perspective

Future Direction PV studied ordinary elliptic curves with $\Gamma_0(N)$, $\Gamma_1(N)$, and $\Gamma(N)$ level structures.

- **1** Count the size of craters in terms of $\ell \in Cl(\mathcal{O})$,
- Obtain generalized class groups acting on each type of level structure. Use *I*_O(*N*) modulo

1 {princ. ideals congruent to \mathbb{Z} modulo N}

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

. .

Recent work

Field Theory Perspective

Future Direction PV studied ordinary elliptic curves with $\Gamma_0(N)$, $\Gamma_1(N)$, and $\Gamma(N)$ level structures.

- **1** Count the size of craters in terms of $\ell \in Cl(\mathcal{O})$,
- Obtain generalized class groups acting on each type of level structure. Use *I*_O(*N*) modulo
 - (1) {princ. ideals congruent to \mathbb{Z} modulo N}
 - **2** {princ. ideals congruent to ± 1 modulo *N*}

Recent work

Field Theor Perspective

Future Directions

Arpin, Castryck, Eriksen, Lorenzon, Vercauteren

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ACELV find sets of elliptic curves with level structure on which an arbitrary generalized class group acts freely and transitively.

Recent work

Field Theory Perspective

Future Directions

Arpin, Castryck, Eriksen, Lorenzon, Vercauteren

ACELV find sets of elliptic curves with level structure on which an arbitrary generalized class group acts freely and transitively. Definition Let H be a subgroup

$$\mathcal{P}_{\mathcal{O},1}(\mathfrak{m}) \leq H \leq \mathcal{I}_{\mathcal{O}}(\mathfrak{m}),$$

the generalized class group associated to H is

 $\operatorname{Cl}_{\mathcal{O}}(H) = \mathcal{I}_{\mathcal{O}}(\mathfrak{m})/H.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Recent work

Field Theory Perspective

Future Directions

Arpin, Castryck, Eriksen, Lorenzon, Vercauteren

ACELV find sets of elliptic curves with level structure on which an arbitrary generalized class group acts freely and transitively. Definition Let H be a subgroup

$$\mathcal{P}_{\mathcal{O},1}(\mathfrak{m}) \leq H \leq \mathcal{I}_{\mathcal{O}}(\mathfrak{m}),$$

the generalized class group associated to H is

 $\operatorname{Cl}_{\mathcal{O}}(H) = \mathcal{I}_{\mathcal{O}}(\mathfrak{m})/H.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Examples: Usual class group, ray class groups ...

Recent work

Field Theory Perspective

Future Directions

Arpin, Castryck, Eriksen, Lorenzon, Vercauteren

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Let $\Gamma \leq \operatorname{Aut}(\mathcal{O}/\mathfrak{m})$. A Γ -level structure on an oriented supersingular curve E is a choice of (group!) isomorphism $\Phi : \mathcal{O}/\mathfrak{m} \to E[\mathfrak{m}]$, up to pre-composition by Γ .

Recent work

Field Theory Perspective

Future Directions

Arpin, Castryck, Eriksen, Lorenzon, Vercauteren

Definition

Let $\Gamma \leq \operatorname{Aut}(\mathcal{O}/\mathfrak{m})$. A Γ -level structure on an oriented supersingular curve E is a choice of (group!) isomorphism $\Phi : \mathcal{O}/\mathfrak{m} \to E[\mathfrak{m}]$, up to pre-composition by Γ .

Question: What set of oriented curves with level structure does $Cl_{\mathcal{O}}(H)$ act on?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Recent work

Field Theory Perspective

Future Direction

Arpin, Castryck, Eriksen, Lorenzon, Vercauteren

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Consider subgroups H of the form:

 $\mathcal{P}_{\mathcal{O},\Lambda}(\mathfrak{m}) = \{ \alpha \mathcal{O} | \alpha \in K^{\times}, \alpha \equiv \lambda \pmod{\mathfrak{m}}, \text{ for } \lambda \in \Lambda \perp \mathcal{N}(\mathfrak{m}) \}.$

Recent work

Field Theory Perspective

Future Direction

Arpin, Castryck, Eriksen, Lorenzon, Vercauteren

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Consider subgroups H of the form:

 $\mathcal{P}_{\mathcal{O},\Lambda}(\mathfrak{m}) = \{ \alpha \mathcal{O} | \alpha \in \mathcal{K}^{\times}, \alpha \equiv \lambda \pmod{\mathfrak{m}}, \text{ for } \lambda \in \Lambda \perp \mathcal{N}(\mathfrak{m}) \}.$

From this, we construct the level structure

 $\mathsf{\Gamma}_{\mathcal{O}, \mathsf{\Lambda}}(\mathfrak{m}) = \{\mu_{\alpha} | \alpha \mathcal{O} \in \mathcal{P}_{\mathcal{O}, \mathsf{\Lambda}}(\mathfrak{m})\} \subset \mathsf{Aut}(\mathcal{O}/\mathfrak{m})$

Recent work

Field Theory Perspective

Future Direction

Arpin, Castryck, Eriksen, Lorenzon, Vercauteren

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Consider subgroups H of the form:

 $\mathcal{P}_{\mathcal{O},\Lambda}(\mathfrak{m}) = \{ \alpha \mathcal{O} | \alpha \in \mathcal{K}^{\times}, \alpha \equiv \lambda \pmod{\mathfrak{m}}, \text{ for } \lambda \in \Lambda \perp \mathcal{N}(\mathfrak{m}) \}.$

From this, we construct the level structure

 $\mathsf{\Gamma}_{\mathcal{O}, \mathsf{\Lambda}}(\mathfrak{m}) = \{\mu_{\alpha} | \alpha \mathcal{O} \in \mathcal{P}_{\mathcal{O}, \mathsf{\Lambda}}(\mathfrak{m})\} \subset \mathsf{Aut}(\mathcal{O}/\mathfrak{m})$

ACELV construct sets of elliptic curves on which $\operatorname{Cl}_{\mathcal{O}}(\mathfrak{m})$ acts freely, and freely and transitively:

Recent work

Field Theory Perspective

Future Direction

Arpin, Castryck, Eriksen, Lorenzon, Vercauteren

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Consider subgroups H of the form:

 $\mathcal{P}_{\mathcal{O},\Lambda}(\mathfrak{m}) = \{ \alpha \mathcal{O} | \alpha \in \mathcal{K}^{\times}, \alpha \equiv \lambda \pmod{\mathfrak{m}}, \text{ for } \lambda \in \Lambda \perp \mathcal{N}(\mathfrak{m}) \}.$

From this, we construct the level structure

$$\mathsf{\Gamma}_{\mathcal{O}, \mathsf{\Lambda}}(\mathfrak{m}) = \{\mu_{\alpha} | \alpha \mathcal{O} \in \mathcal{P}_{\mathcal{O}, \mathsf{\Lambda}}(\mathfrak{m})\} \subset \mathsf{Aut}(\mathcal{O}/\mathfrak{m})$$

ACELV construct sets of elliptic curves on which $\operatorname{Cl}_{\mathcal{O}}(\mathfrak{m})$ acts freely, and freely and transitively:

1 $Y_{\Gamma} := \{ \text{prim. } \mathcal{O} \text{-oriented curves with } \Gamma \text{ structure} \}$

Recent work

Field Theory Perspective

Future Direction

Arpin, Castryck, Eriksen, Lorenzon, Vercauteren

Consider subgroups H of the form:

 $\mathcal{P}_{\mathcal{O},\Lambda}(\mathfrak{m}) = \{ \alpha \mathcal{O} | \alpha \in \mathcal{K}^{\times}, \alpha \equiv \lambda \pmod{\mathfrak{m}}, \text{ for } \lambda \in \Lambda \perp \mathcal{N}(\mathfrak{m}) \}.$

From this, we construct the level structure

$$\mathsf{\Gamma}_{\mathcal{O}, \mathsf{\Lambda}}(\mathfrak{m}) = \{\mu_{\alpha} | \alpha \mathcal{O} \in \mathcal{P}_{\mathcal{O}, \mathsf{\Lambda}}(\mathfrak{m})\} \subset \mathsf{Aut}(\mathcal{O}/\mathfrak{m})$$

ACELV construct sets of elliptic curves on which $\operatorname{Cl}_{\mathcal{O}}(\mathfrak{m})$ acts freely, and freely and transitively:

- **1** $Y_{\Gamma} := \{ \text{prim. } \mathcal{O} \text{-oriented curves with } \Gamma \text{ structure} \}$
- **2** $Z_{\Gamma} := \{\mathcal{O}\text{-module isomorphism level structures} \subset Y_{\Gamma}\}$

Arpin, Castryck, Eriksen, Lorenzon, Vercauteren

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem Let $\mathfrak{m} \subset \mathcal{O}$ be a proper ideal, and let $H = \mathcal{P}_{\mathcal{O},\Lambda}(\mathfrak{m})$. Then

$$[\mathfrak{a}]\star(E,\Phi)=(\varphi_{\mathfrak{a}}(E),\varphi_{\mathfrak{a}}\circ\Phi)$$

is a well-defined free action of Cl_H on $Z_{\Gamma_{\mathcal{O},\Lambda}(\mathfrak{m})}$. If $\Lambda \subset \mathcal{O}^{\times}\mathbb{Z}$ then this extends to a free action of Cl_H on $Y_{\Gamma_{\mathcal{O},\Lambda}(\mathfrak{m})}$.

Introductio

Recent work

Field Theory Perspective

Future Directions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Agenda

Recent work

Field Theory Perspective

Future Direction

Class field theory provides a correspondence

generalized class groups \leftrightarrow abelian extensions of K

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Agenda

Recent work

Field Theory Perspective

Future Direction

Class field theory provides a correspondence

generalized class groups \leftrightarrow abelian extensions of K

In particular, the generalized class group is isomorphic to the corresponding Galois group.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction

Agenda

Recent work

Field Theory Perspective

Future Directions For imaginary quadratic fields, we have

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Agenda

Recent work

Field Theory Perspective

Future Directions For imaginary quadratic fields, we have $\mathbf{1} \ \mathcal{I}_{\mathcal{O}}(\mathfrak{m})/\mathcal{P}_{\mathcal{O}}(\mathfrak{m}) \leftrightarrow \operatorname{Gal}(\mathcal{K}(j(E_0),\ldots,j(E_n))/\mathcal{K})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Agenda

Recent worl

Field Theory Perspective

Future Directions For imaginary quadratic fields, we have 1 $\mathcal{I}_{\mathcal{O}}(\mathfrak{m})/\mathcal{P}_{\mathcal{O}}(\mathfrak{m}) \leftrightarrow \operatorname{Gal}(\mathcal{K}(j(E_0), \ldots, j(E_n))/\mathcal{K}))$ 2 $\mathcal{I}_{\mathcal{O}}(\mathfrak{m})/\mathcal{P}_{\mathcal{O},1}(\mathfrak{m}) \leftrightarrow \operatorname{Gal}(\mathcal{K}(j(E), h(E[\mathfrak{m}])/\mathcal{K})))$, where *h* is the Weber function.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Agenda

Field Theory Perspective

Future Directions For imaginary quadratic fields, we have 1 $\mathcal{I}_{\mathcal{O}}(\mathfrak{m})/\mathcal{P}_{\mathcal{O}}(\mathfrak{m}) \leftrightarrow \operatorname{Gal}(\mathcal{K}(j(E_0), \ldots, j(E_n))/\mathcal{K})$ 2 $\mathcal{I}_{\mathcal{O}}(\mathfrak{m})/\mathcal{P}_{\mathcal{O},1}(\mathfrak{m}) \leftrightarrow \operatorname{Gal}(\mathcal{K}(j(E), h(E[\mathfrak{m}])/\mathcal{K}),$ where *h* is the Weber function.

Item one conceptually explains the regular class group action.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Agenda

Field Theory Perspective

Future Directions For imaginary quadratic fields, we have 1 $\mathcal{I}_{\mathcal{O}}(\mathfrak{m})/\mathcal{P}_{\mathcal{O}}(\mathfrak{m}) \leftrightarrow \operatorname{Gal}(\mathcal{K}(j(E_0), \ldots, j(E_n))/\mathcal{K})$ 2 $\mathcal{I}_{\mathcal{O}}(\mathfrak{m})/\mathcal{P}_{\mathcal{O},1}(\mathfrak{m}) \leftrightarrow \operatorname{Gal}(\mathcal{K}(j(E), h(E[\mathfrak{m}])/\mathcal{K}),$ where *h* is the Weber function.

Item one conceptually explains the regular class group action.

Question: Can we gain insight into generalized class group actions from item two?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition

Let Λ be a multiplicatively closed subset of \mathcal{O} containing 1. Then there exists a unique subgroup $\mathcal{O}^{\times}/\mathfrak{m} \leq \tilde{\Lambda} \leq (\mathcal{O}/\mathfrak{m})^{\times}$ such that

$$\mathcal{P}_{\mathcal{O},\Lambda}(\mathfrak{m}) = \{ \alpha \mathcal{O} | \alpha \in \mathcal{K}^{\times}, \alpha \pmod{\mathfrak{m}} \in \tilde{\Lambda} \}.$$

Agenda Recent worl

Field Theory Perspective

Future Directions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition

Field Theory Perspective

Let Λ be a multiplicatively closed subset of \mathcal{O} containing 1. Then there exists a unique subgroup $\mathcal{O}^{\times}/\mathfrak{m} \leq \tilde{\Lambda} \leq (\mathcal{O}/\mathfrak{m})^{\times}$ such that

$$\mathcal{P}_{\mathcal{O},\Lambda}(\mathfrak{m}) = \{ \alpha \mathcal{O} | \alpha \in K^{\times}, \alpha \pmod{\mathfrak{m}} \in \tilde{\Lambda} \}.$$

Notice:

Proposition

Let Λ be a multiplicatively closed subset of \mathcal{O} containing 1. Then there exists a unique subgroup $\mathcal{O}^{\times}/\mathfrak{m} \leq \tilde{\Lambda} \leq (\mathcal{O}/\mathfrak{m})^{\times}$ such that

$$\mathcal{P}_{\mathcal{O},\Lambda}(\mathfrak{m}) = \{ \alpha \mathcal{O} | \alpha \in K^{\times}, \alpha \pmod{\mathfrak{m}} \in \tilde{\Lambda} \}.$$

Notice:

$$\begin{split} (\mathcal{O}/\mathfrak{m})^{\times}/(\mathcal{O}^{\times}/\mathfrak{m}) &\cong \mathcal{P}_{\mathcal{O}}(\mathfrak{m})/\mathcal{P}_{\mathcal{O},1}(\mathfrak{m}) \\ &\cong \mathsf{Gal}(\mathsf{Ray \ class \ field}/\mathsf{Hilbert \ class \ field}) \end{split}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Recent work Field Theory Perspective

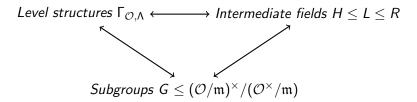
Future Directions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition

Field Theory Perspective

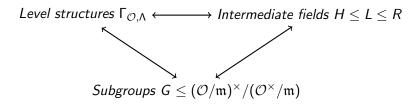
We have natural bijections between



Proposition

Field Theory Perspective

We have natural bijections between



Corollary

If [R : H] = q is prime, then the construction in AECLV gives only two level structures: full and trivial.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Recent work

Field Theory Perspective

Future Directions

The Z_{Γ} action from the field perspective

Question: What is special about Z_{Γ} from the class-field perspective?

Recent work

Field Theory Perspective

Future Directions

The Z_{Γ} action from the field perspective

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Question: What is special about Z_{Γ} from the class-field perspective?

Recall: $Z_{\Gamma} = \{(E, \Phi) : \Phi \text{ is an } \mathcal{O}\text{-module isomorphism}\}/\sim$.

Recent work

Field Theory Perspective

Future Directions

The Z_{Γ} action from the field perspective

Question: What is special about Z_{Γ} from the class-field perspective?

Recall: $Z_{\Gamma} = \{(E, \Phi) : \Phi \text{ is an } \mathcal{O}\text{-module isomorphism}\} / \sim$.

Writing $\mathcal{O} = \mathbb{Z}[\sigma]$, this is equivalently the level structures $(E, P, \sigma(P))$, where P is an \mathcal{O} -module generator for $E[\mathfrak{m}]$.

Recent work

Field Theory Perspective

Future Directions

The Z_{Γ} action from the field perspective

Restrict to the case of full level structure. Then the corresponding field is the Ray class field

 $K(j(E), h(E[\mathfrak{m}]) = H(h(E[\mathfrak{m}]).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Recent work

Field Theory Perspective

Future Directions

The Z_{Γ} action from the field perspective

Restrict to the case of full level structure. Then the corresponding field is the Ray class field

 $K(j(E), h(E[\mathfrak{m}]) = H(h(E[\mathfrak{m}])).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proposition

Let P be an element of $E[\mathfrak{m}]$ that generates $E[\mathfrak{m}]$ as an \mathcal{O} -module. Then h(P) is a primitive element for $R = H(h(E[\mathfrak{m}]))/H$.

Recent wor

Field Theory Perspective

Future Directions Some future directions to explore:

- 1 In what cases can we describe the level structure explicitly from properties of the corresponding field?
- 2 Does this perspective help clarify what happens when we take P_O(𝔅) ⊊ H?
- 3 Can we use these class group actions to answer computational questions about abelian extensions of K?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Recent wor

Field Theory Perspective

Future Directions Some future directions to explore:

- 1 In what cases can we describe the level structure explicitly from properties of the corresponding field?
- 2 Does this perspective help clarify what happens when we take P_O(𝔅) ⊊ H?
- 3 Can we use these class group actions to answer computational questions about abelian extensions of K?

Thanks!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @