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2 Conceptualizing isogeny problems . . .
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Recent work by various authors, combines these concepts, to
look at class group actions on elliptic curves with level
structure.

Our agenda:

1 Review recent results,

2 Propose an alternative framework,

3 Explore.

Joint work (in progress) with Sarah Arpin, Joseph Macula.
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Definitions

First, some definitions:

Definition
An orientation is an embedding O ↪→ End(E ). An orientation is
primitive if it cannot be extended.

Definition
For Γ ≤ GL2(Z/NZ), a Γ-level structure on E is an
isomorphism

Φ : (Z/NZ)2 → E [N],

up to pre-composition by an element of Γ.
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Galbraith, Perrin, Voloch

In 2023, GPS proposed a cryptosystem based on CSIDH with
full level N structure.

Full level structure means that we take Γ =

{(
1 0
0 1

)}
. In

other words, we specify a basis of E [N].
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Galbraith, Perrin, Voloch

To find an appropriate class group they use:

ClN(O) =
{frac. ideals coprime to N}

{princ. frac. ideals αO, α ≡ 1 (mod N)}

Notes:

1 The class group action is still free, but not transitive.

2 This does not improve security.
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Perrin, Voloch

PV studied ordinary elliptic curves with Γ0(N), Γ1(N), and
Γ(N) level structures.

1 Count the size of craters in terms of ℓ ∈ Cl(O),

2 Obtain generalized class groups acting on each type of
level structure. Use IO(N) modulo

1 {princ. ideals congruent to Z modulo N}
2 {princ. ideals congruent to ±1 modulo N}
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Arpin, Castryck, Eriksen,
Lorenzon, Vercauteren

ACELV find sets of elliptic curves with level structure on which
an arbitrary generalized class group acts freely and transitively.

Definition
Let H be a subgroup

PO,1(m) ≤ H ≤ IO(m),

the generalized class group associated to H is

ClO(H) = IO(m)/H.

Examples: Usual class group, ray class groups . . .
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Definition
Let Γ ≤ Aut(O/m). A Γ-level structure on an oriented
supersingular curve E is a choice of (group!) isomorphism
Φ : O/m → E [m], up to pre-composition by Γ.

Question: What set of oriented curves with level structure does
ClO(H) act on?
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Lorenzon, Vercauteren

Consider subgroups H of the form:

PO,Λ(m) = {αO|α ∈ K×, α ≡ λ (mod m), for λ ∈ Λ ⊥ N(m)}.

From this, we construct the level structure

ΓO,Λ(m) = {µα|αO ∈ PO,Λ(m)} ⊂ Aut(O/m)

ACELV construct sets of elliptic curves on which ClO(m) acts
freely, and freely and transitively:

1 YΓ := {prim. O-oriented curves with Γ structure}
2 ZΓ := {O-module isomorphism level structures ⊂ YΓ}
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Lorenzon, Vercauteren

Theorem
Let m ⊂ O be a proper ideal, and let H = PO,Λ(m). Then

[a] ⋆ (E ,Φ) = (φa(E ), φa ◦ Φ)

is a well-defined free action of ClH on ZΓO,Λ(m). If Λ ⊂ O×Z
then this extends to a free action of ClH on YΓO,Λ(m.
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Class Field Theory

Class field theory provides a correspondence

generalized class groups ↔ abelian extensions of K

In particular, the generalized class group is isomorphic to the
corresponding Galois group.
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Class Field Theory

For imaginary quadratic fields, we have

1 IO(m)/PO(m) ↔ Gal(K (j(E0), . . . , j(En))/K )

2 IO(m)/PO,1(m) ↔ Gal(K (j(E ), h(E [m])/K ),

where h is the Weber function.

Item one conceptually explains the regular class group action.

Question: Can we gain insight into generalized class group
actions from item two?
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Counting level structures

Proposition

Let Λ be a multiplicatively closed subset of O containing 1.
Then there exists a unique subgroup O×/m ≤ Λ̃ ≤ (O/m)×

such that

PO,Λ(m) = {αO|α ∈ K×, α (mod m) ∈ Λ̃}.

Notice:

(O/m)×/(O×/m) ∼= PO(m)/PO,1(m)
∼= Gal(Ray class field/Hilbert class field)
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Counting level structures

Proposition

We have natural bijections between

Level structures ΓO,Λ Intermediate fields H ≤ L ≤ R

Subgroups G ≤ (O/m)×/(O×/m)

Corollary

If [R : H] = q is prime, then the construction in AECLV gives
only two level structures: full and trivial.
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The ZΓ action from the field
perspective

Question: What is special about ZΓ from the class-field
perspective?

Recall: ZΓ = {(E ,Φ) : Φis an O-module isomorphism}/ ∼.

Writing O = Z[σ], this is equivalently the level structures
(E ,P, σ(P)), where P is an O-module generator for E [m].
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The ZΓ action from the field
perspective

Restrict to the case of full level structure. Then the
corresponding field is the Ray class field

K (j(E ), h(E [m]) = H(h(E [m]).

Proposition

Let P be an element of E [m] that generates E [m] as an
O-module. Then h(P) is a primitive element for
R = H(h(E [m]))/H.
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Some future directions to explore:

1 In what cases can we describe the level structure explicitly
from properties of the corresponding field?

2 Does this perspective help clarify what happens when we
take PO(m) ⊊ H?

3 Can we use these class group actions to answer
computational questions about abelian extensions of K?

Thanks!
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