Translating Ideals to Isogenies

A tutorial on the general approach

Setting:

"Effective primitive embedding"

- E elliptic curve
- $\operatorname{End}(E) \supseteq O$ quadratic order OR maximal quaternion order
- $I = O(N, \alpha)$ a (primitive, invertible) ideal of with $\operatorname{nrd}(I) = N$

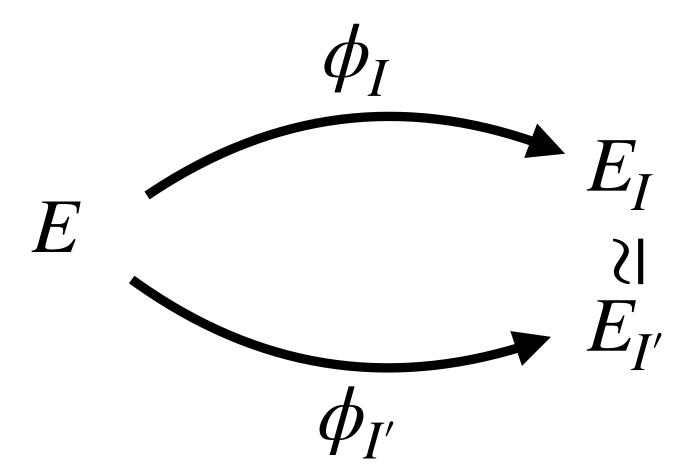
Goal:

- Compute ϕ_I

Some preliminaries

$$\phi_I$$
 is defined by $\ker \phi_I = \{P \in E \mid \beta(P) = 0, \forall \beta \in I\}$
= $E[N] \cap \ker \alpha$

We are free to replace ϕ_I by $\phi_{I'}$ where $I'=I\beta$



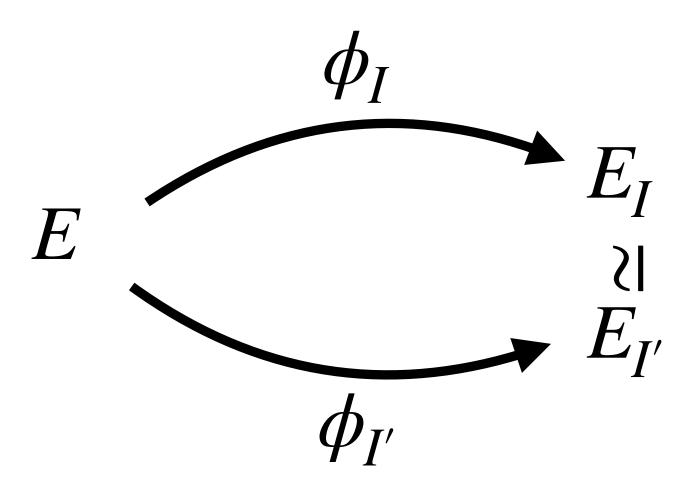
Some preliminaries

$$\phi_I$$
 is defined by $\ker \phi_I = \{P \in E \mid \beta(P) = 0, \forall \beta \in I\}$
= $E[N] \cap \ker \alpha$

We are free to replace ϕ_I by $\phi_{I'}$ where $I'=I\beta$

First idea:

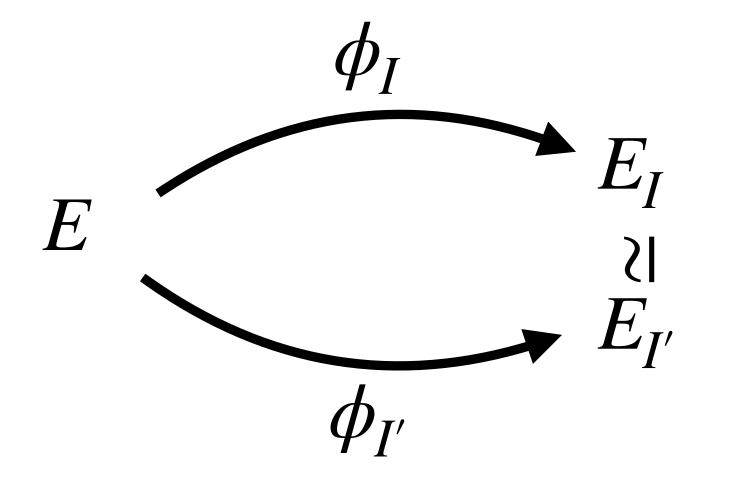
- Assume N_I smooth



Some preliminaries

$$\phi_I$$
 is defined by $\ker \phi_I = \{P \in E \mid \beta(P) = 0, \forall \beta \in I\}$
$$= E[N] \cap \ker \alpha$$

We are free to replace ϕ_I by $\phi_{I'}$ where $I' = I\beta$



First idea:

- Assume N_I smooth Recover $\ker \phi_I$

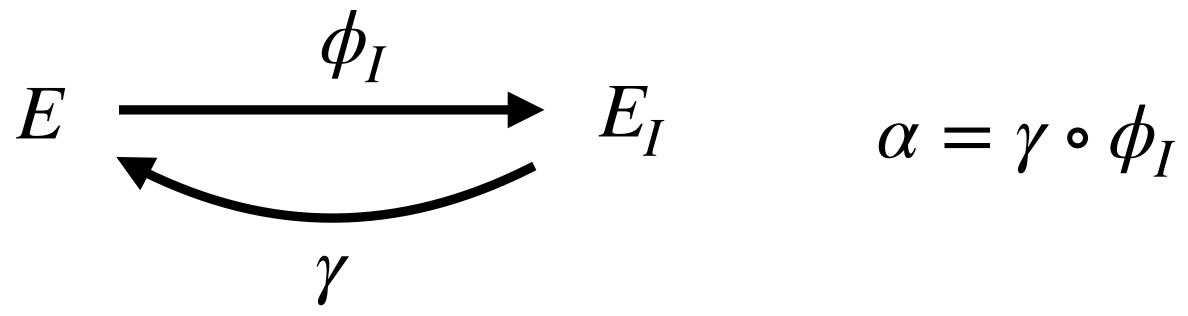
$$I = \langle N, \alpha \rangle$$

$$E \xrightarrow{\phi_I} E_I$$

$$I = \langle N, \alpha \rangle$$

$$E \xrightarrow{\phi_I} E_I \qquad \alpha = \gamma \circ \phi_I$$

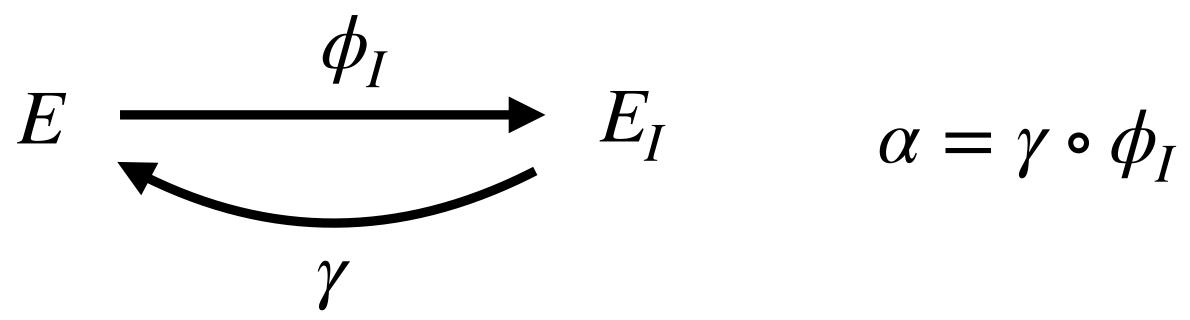
$$I = \langle N, \alpha \rangle$$



Idea: Project $E_I[N]$ onto $\ker \phi_I$

$$\ker \phi_I = \{\widehat{\phi}_I(P) \mid P \in E_I[N]\}$$

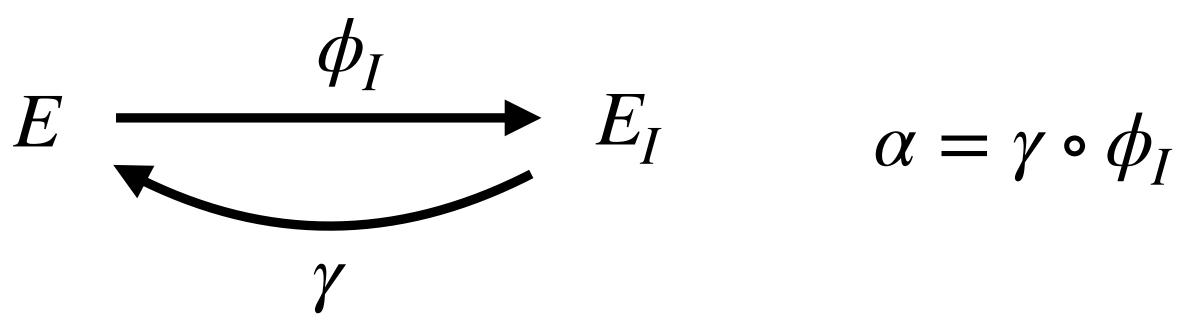
$$I = \langle N, \alpha \rangle$$



Idea: Project $E_I[N]$ onto $\ker \phi_I$

$$\ker \phi_I = \{ \widehat{\phi}_I(P) \mid P \in E_I[N] \}$$
$$= \{ \widehat{\phi}_I(\widehat{\gamma}(P)) \mid P \in E[N] \}$$

$$I = \langle N, \alpha \rangle$$



Idea: Project $E_I[N]$ onto $\ker \phi_I$

$$\ker \phi_I = \{ \widehat{\phi}_I(P) \mid P \in E_I[N] \}$$

$$= \{ \widehat{\phi}_I(\widehat{\gamma}(P)) \mid P \in E[N] \}$$

$$= \{ \widehat{\alpha}(P) \mid P \in E[N] \}$$

"Often" enough to take a single point of order *N*

O quadratic	O quaternionic	

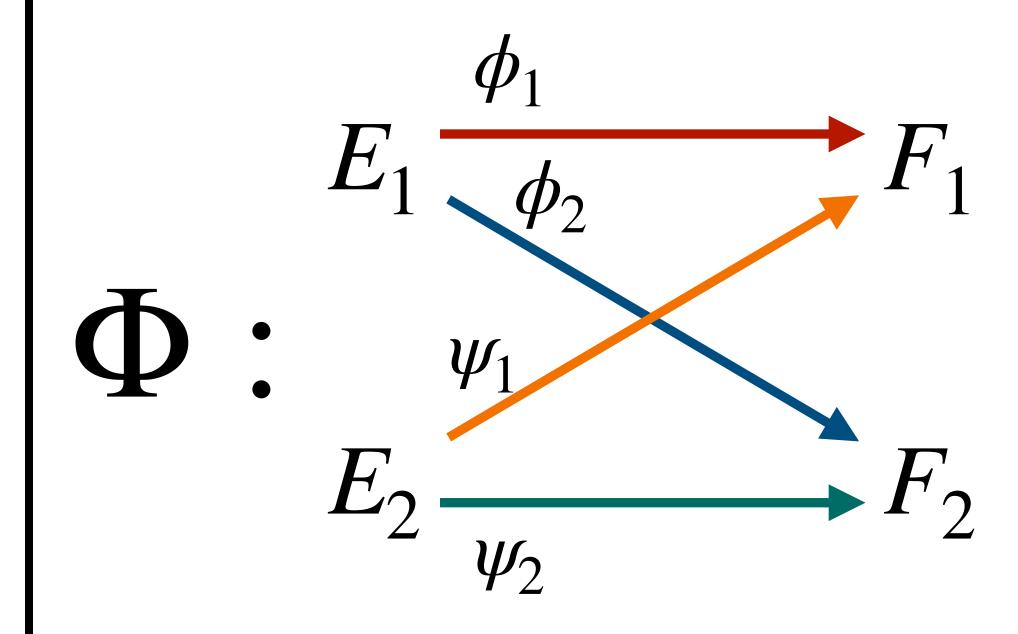
O quadratic

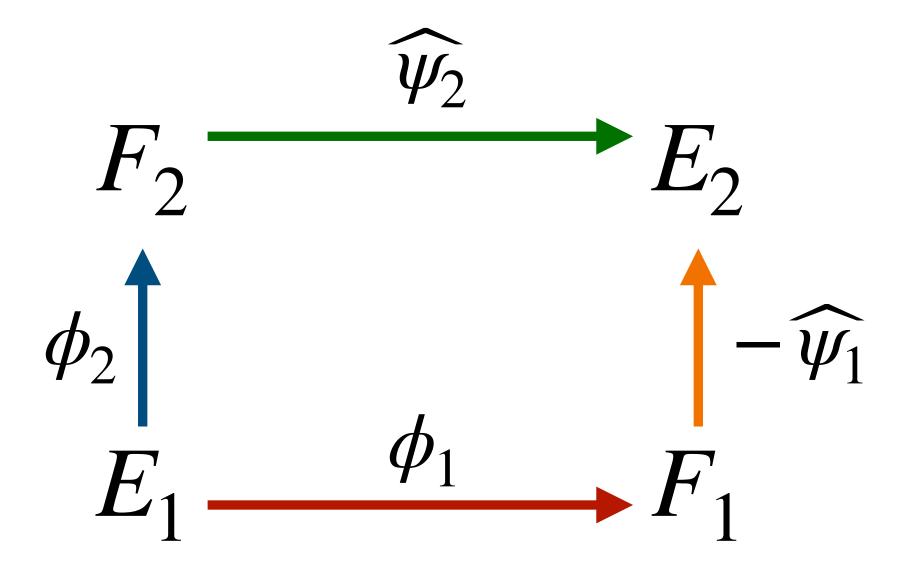
O quaternionic

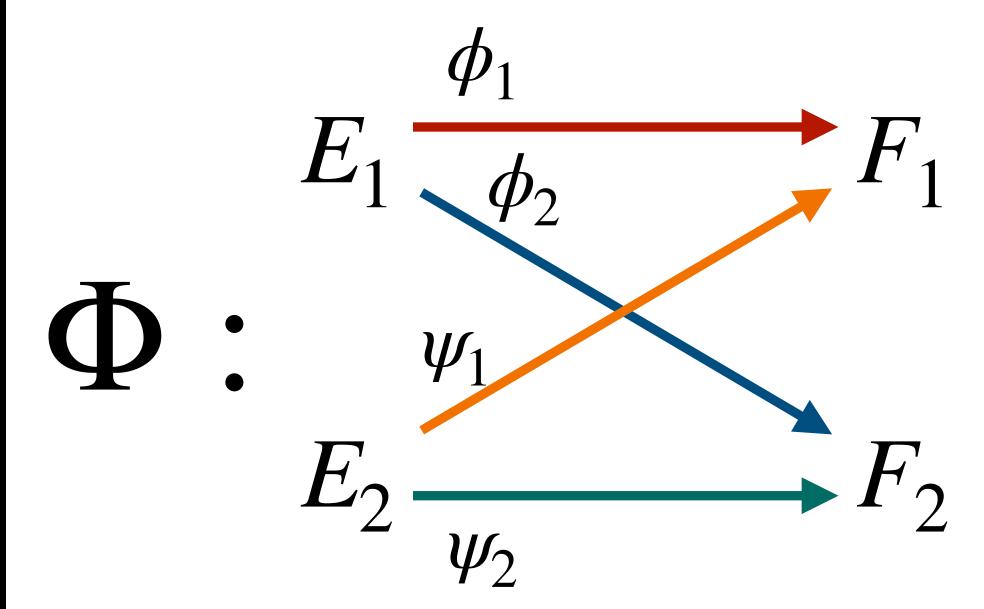
No polynomial time algorithm in general :((

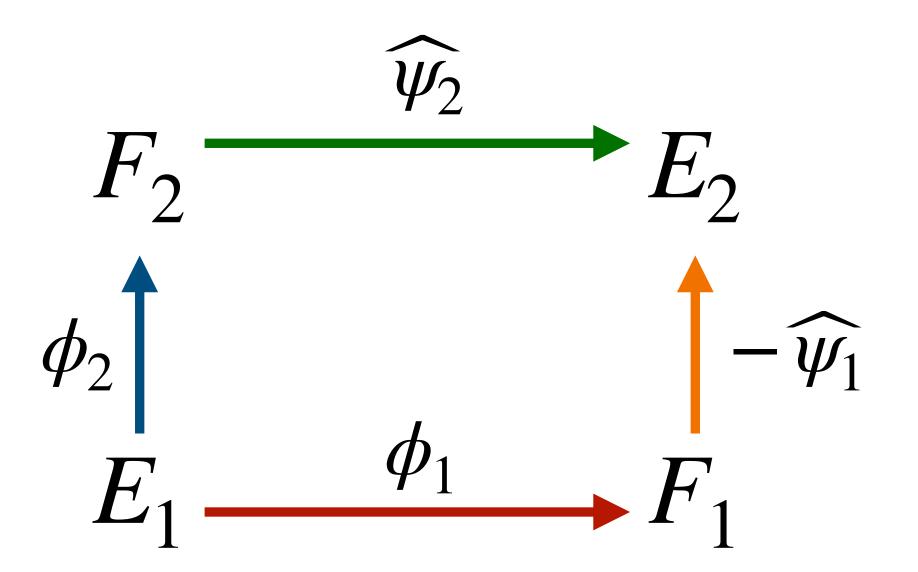
O quadratic	O quate	rnionic
No polynomial time algorithm in general :(($O = \mathcal{O}_0$	$O \neq \mathcal{O}_0$

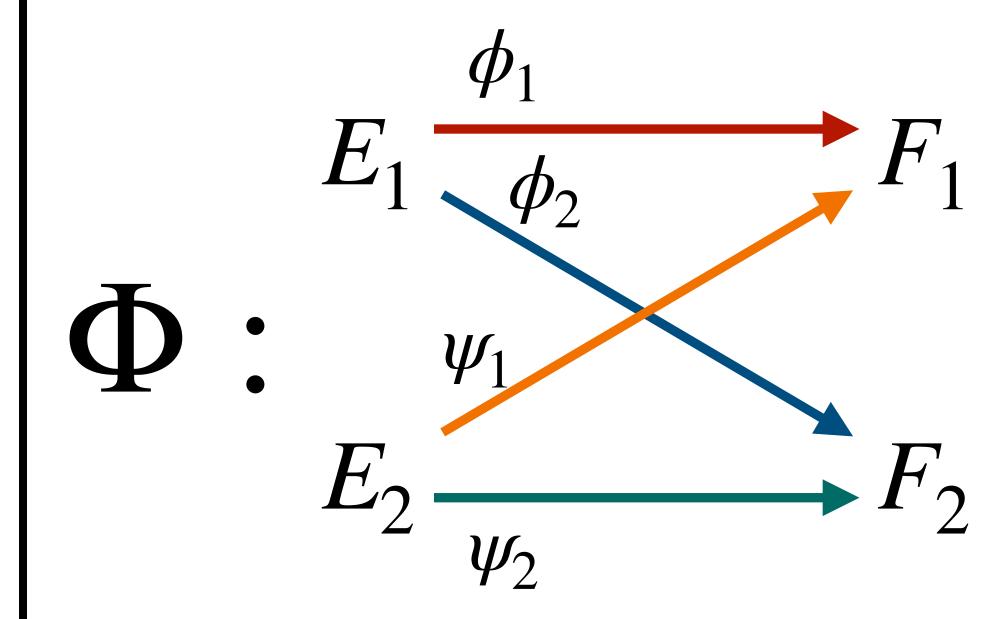
O quadratic	O quate	rnionic
	$O = \mathcal{O}_0$	$O \neq \mathcal{O}_0$
No polynomial time algorithm in general :((KLPT - Issue: Output size $N_I > p^3$	



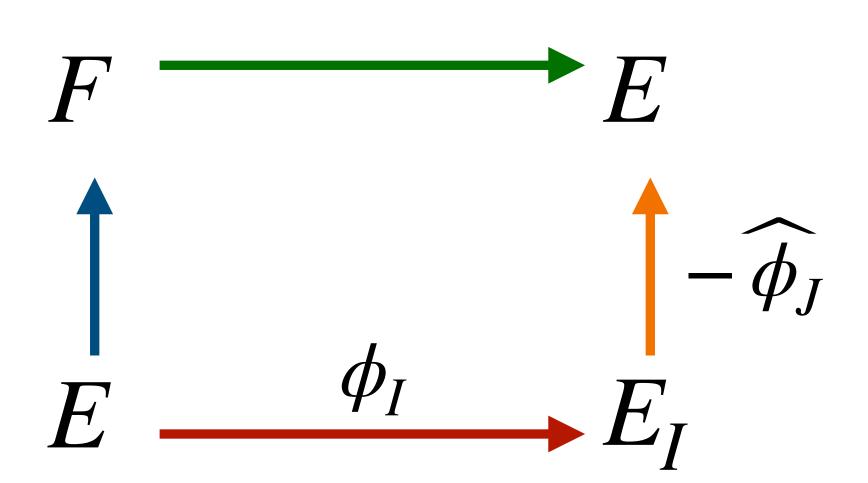


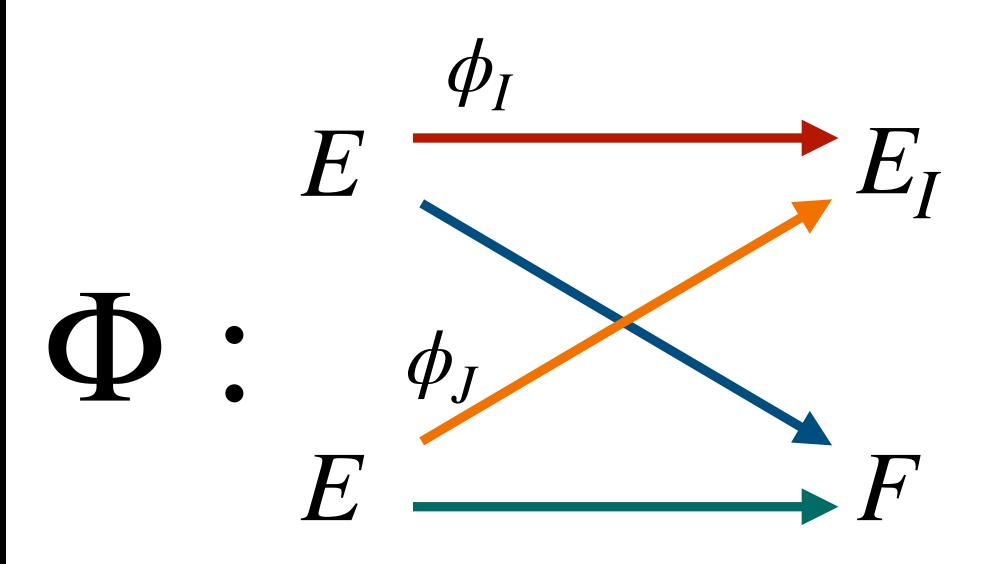




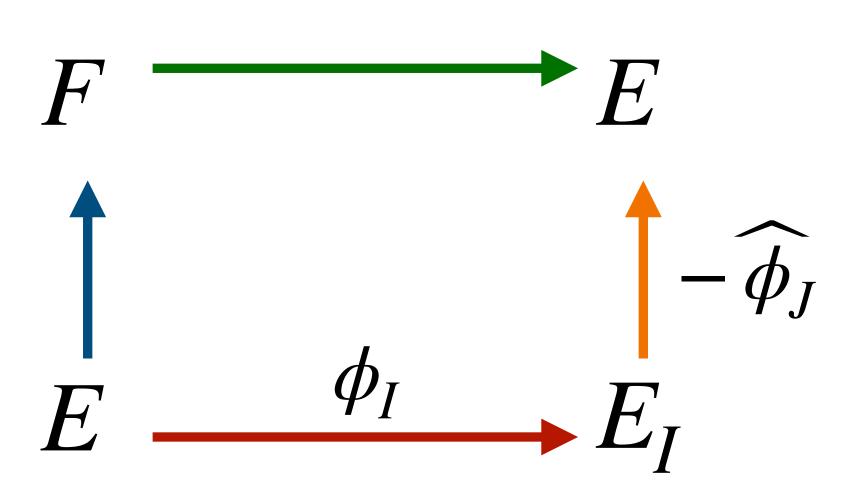


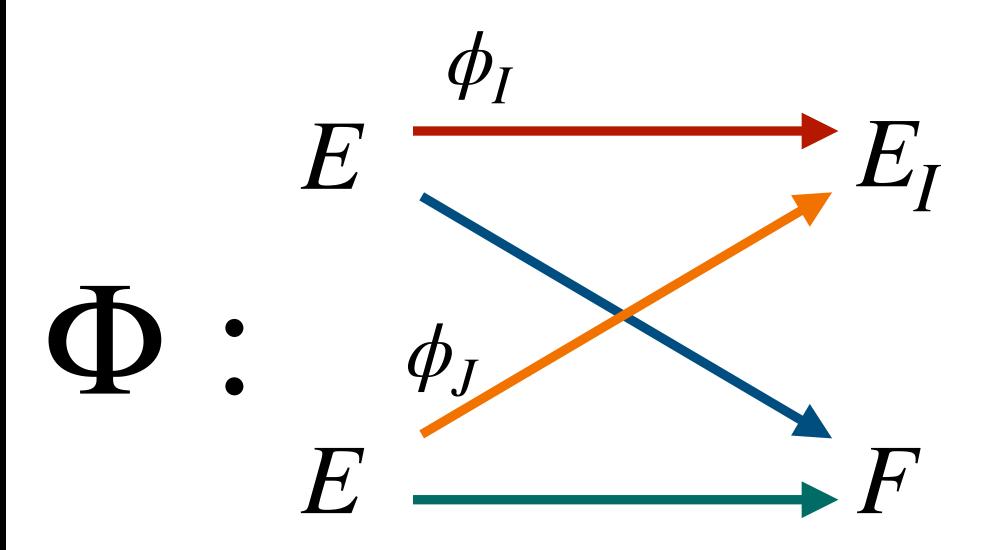
$$\longrightarrow N = \deg \phi_1 + \deg \phi_2$$





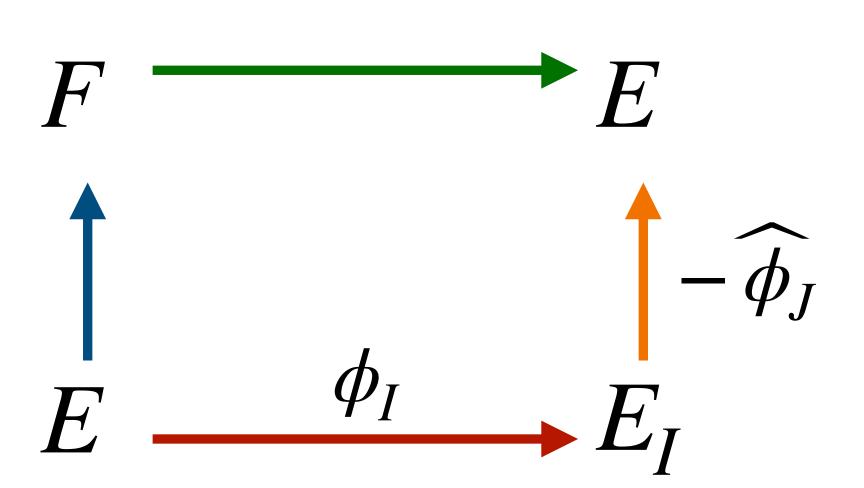
- Assume $I \sim J$ with $nrd(I) + nrd(J) = 2^e$
- Recover ker Φ





$$\ker \Phi = \{(\widehat{\phi}_I(P), \widehat{\phi}_J(Q)) \mid P, Q \in E_I[2^e]\}$$

- Assume $I \sim J$ with $\operatorname{nrd}(I) + \operatorname{nrd}(J) = 2^e$
- Recover ker Φ

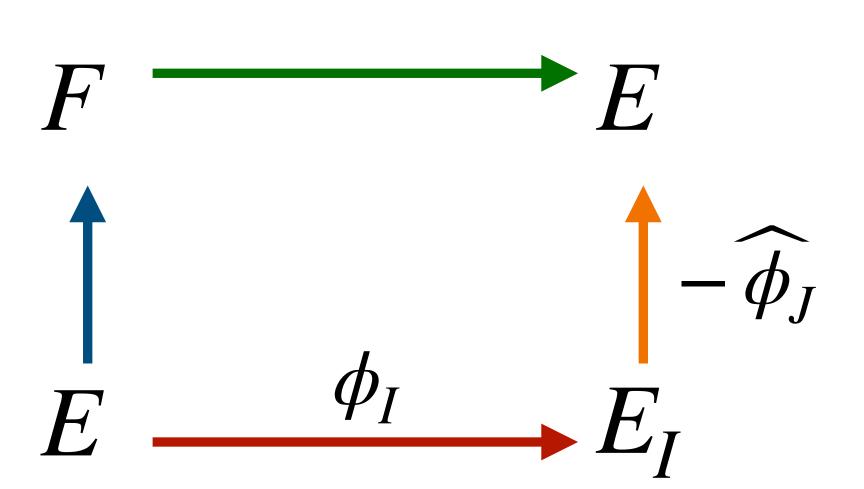


$$\Phi: \begin{array}{c} \phi_I \\ E \end{array} \longrightarrow \begin{array}{c} E_I \\ F \end{array}$$

$$\ker \Phi = \{ (\widehat{\phi}_I(P), \widehat{\phi}_J(Q)) \mid P, Q \in E_I[2^e] \}$$

$$= \{ (\widehat{\phi}_I \circ \widehat{\phi}_I(P), \phi_I \circ \widehat{\phi}_J(Q)) \mid P, Q \in E[2^e] \}$$

- Assume $I \sim J$ with $\operatorname{nrd}(I) + \operatorname{nrd}(J) = 2^e$
- Recover ker Φ



$$\ker \Phi = \{ (\widehat{\phi}_I(P), \widehat{\phi}_J(Q)) \mid P, Q \in E_I[2^e] \}$$

$$= \{ (\phi_I \circ \widehat{\phi}_I(P), \phi_I \circ \widehat{\phi}_J(Q)) \mid P, Q \in E[2^e] \}$$

$$= \{ ([N_I]P, \gamma(Q)) \mid P, Q \in E[2^e] \}$$

- Assume $I \sim J$ with $\operatorname{nrd}(I) + \operatorname{nrd}(J) = 2^e$
- Recover ker Φ

"Assume
$$I \sim J$$
 with $nrd(I) + nrd(J) = 2^{e}$ "

O quadratic O quaternionic

KLaPoTi: this is an KLPT instance!

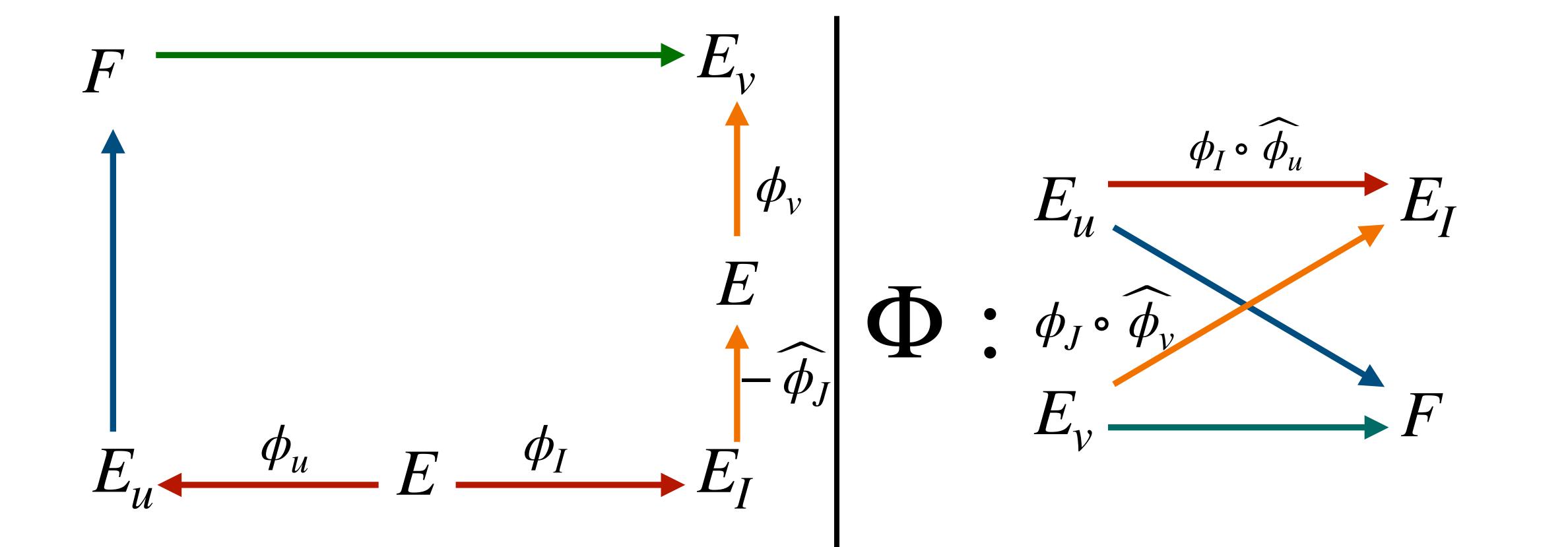
Brainstorm?

"Assume
$$I \sim J$$
 with $nrd(I) + nrd(J) = 2^{e}$ "

O quadratic O quaternionic

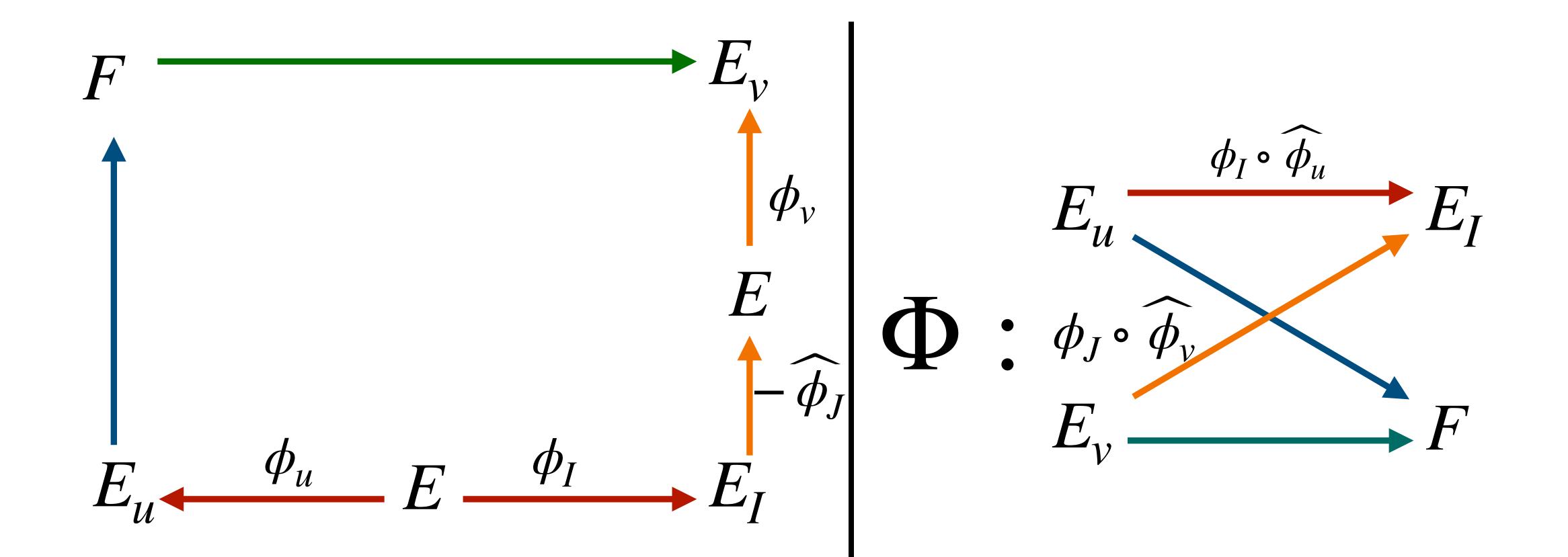
KLaPoTi: this is an KLPT instance!

Brainstorm?



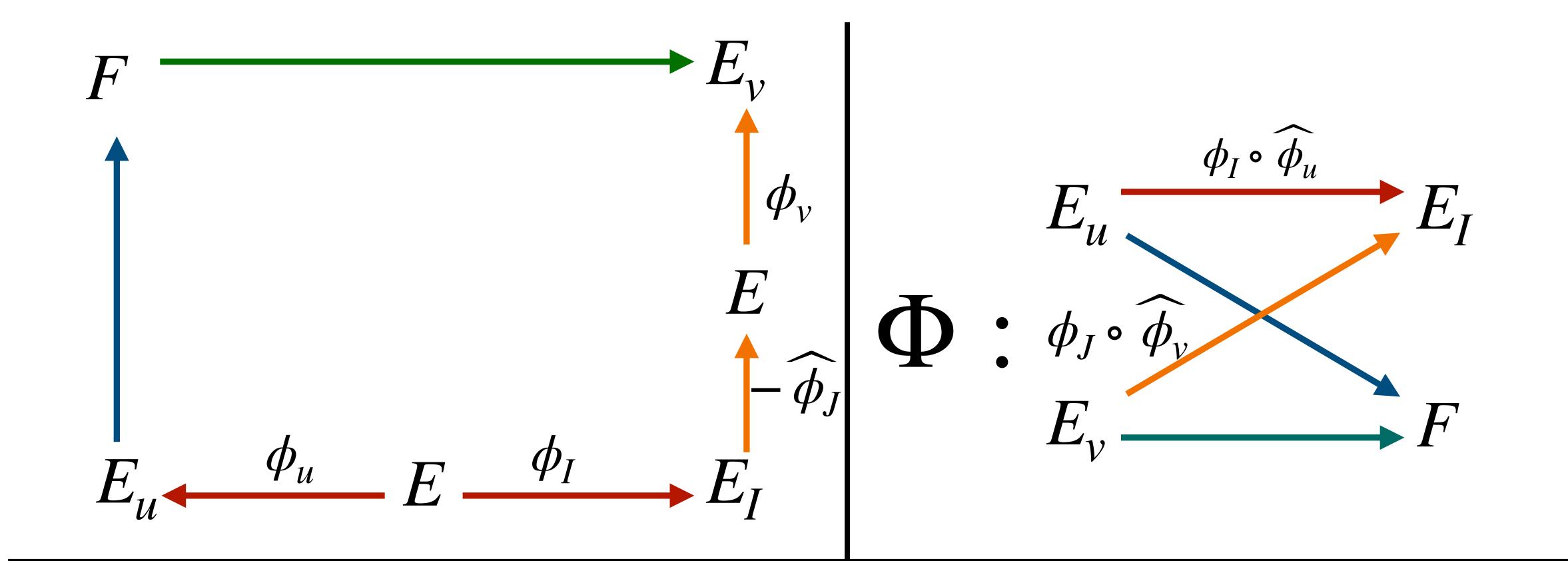
- Assume $I \sim J$ and $u, v \in \mathbb{N}$ with $uN_I + vN_J = 2^e$

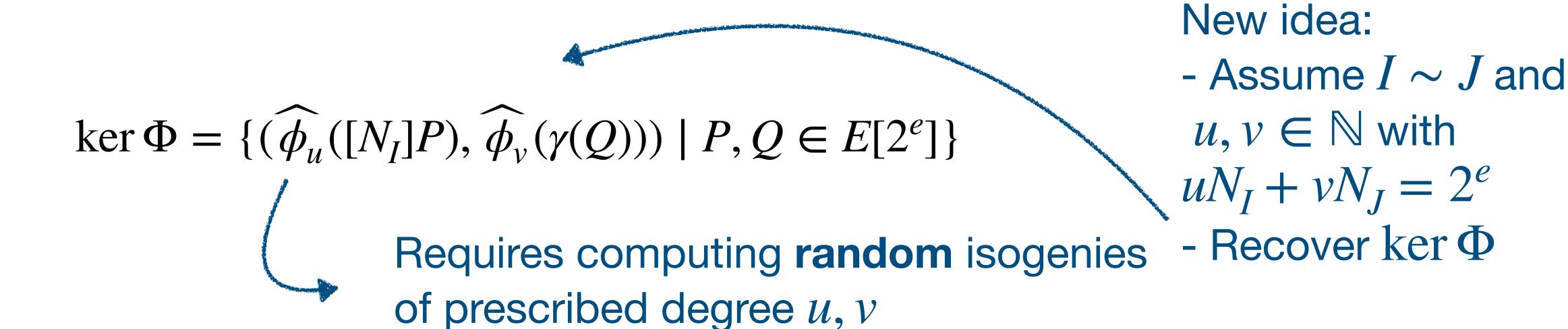
- Recover $\ker \Phi$



$$\ker \Phi = \{(\widehat{\phi}_u([N_I]P), \widehat{\phi}_v(\gamma(Q))) \mid P, Q \in E[2^e]\}$$

- Assume $I \sim J$ and $u, v \in \mathbb{N}$ with $uN_I + vN_J = 2^e$ - Recover ker Φ





"Computing random isogenies of prescribed degree u, v"

O quadratic	O quaternionic	
	$O = \mathcal{O}_0$	

"Computing random isogenies of prescribed degree u, v"

O quadratic	O quaternionic	
Ref. Pierrick's talk: Restrictions on $u, v,$ ϕ_u, ϕ_v live in dimension 2	$O = \mathcal{O}_0$	

"Computing random isogenies of prescribed degree u, v"

O quadratic	O quaternionic
Ref. Pierrick's talk:	$O = \mathcal{O}_0$
Restrictions on u, v , ϕ_u, ϕ_v live in dimension 2	- No restrictions on u, v , - find ϕ_u, ϕ_v dimension 1 - "QFESTA-trick"

"Assume
$$I \sim J$$
 and $u, v \in \mathbb{N}$ with $uN_I + vN_J = 2^{e_{\parallel}}$

Aaaaalmost enough: Take "smallest" norm $I, J \sim K$

Issue: Expect $N_I \approx N_J \approx \sqrt{p}$, while $2^e < p$

O quadratic

O quaternionic

$$O = \mathcal{O}_0$$

"Assume
$$I \sim J$$
 and $u, v \in \mathbb{N}$ with $uN_I + vN_J = 2^{e_{\parallel}}$

Aaaaalmost enough: Take "smallest" norm $I, J \sim K$

Issue: Expect $N_I \approx N_J \approx \sqrt{p}$, while $2^e < p$

O quadratic

O quaternionic

Ref. Pierrick's talk:

- Rerandomization:
 - Replace K by KL for some easy to compute ϕ_L
 - Essential: $\operatorname{End}(E_I) = O$

O =	$= \mathcal{O}_0$
-----	-------------------

"Assume
$$I \sim J$$
 and $u, v \in \mathbb{N}$ with $uN_I + vN_J = 2^{e_{\parallel}}$

Aaaaalmost enough: Take "smallest" norm $I, J \sim K$

Issue: Expect $N_I \approx N_J \approx \sqrt{p}$, while $2^e < p$

O quadratic

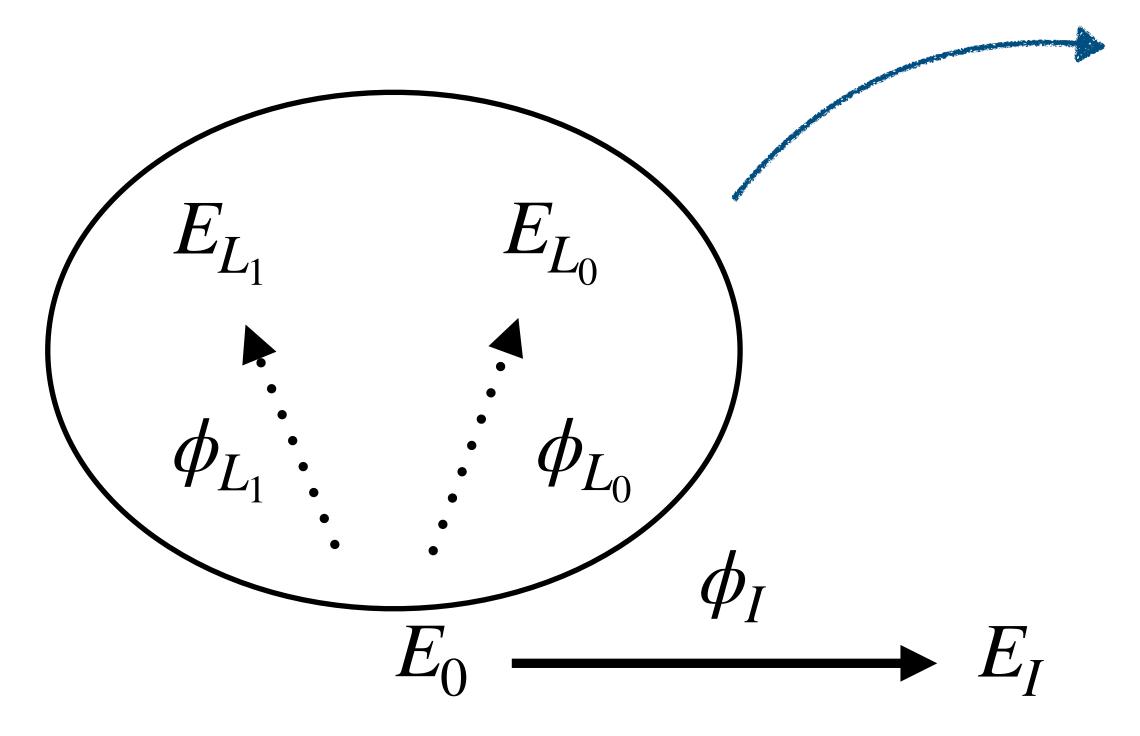
O quaternionic

Ref. Pierrick's talk:

- Rerandomization:
 - Replace K by KL for some easy to compute ϕ_L
 - Essential: $\operatorname{End}(E_I) = O$

$$O = \mathcal{O}_0$$

- Rerandomization:
 - Issue: $\operatorname{End}(E_L) \neq \mathcal{O}_0$



Precompute these isogenies with $\operatorname{End}(E_{L_i})$ "special p-extremal"

Rerandomization:

- Replace K with these specific KL_i

Open questions for quaternion case (relevant for SQlsign):

How to find $I \sim J$ with $nrd(I) + nrd(J) = 2^n$?

Probably difficult
Big efficiency gain if successful!

Apply tricks from PEGASIS to reduce failure probability/rerandomization

Will probably work Maybe limited impact