On prime degree twisting endomorphisms of supersingular elliptic curves

JORDI PUJOLÀS, Universitat de Lleida together with JOSEP M. MIRET and JAVIER VALERA

Escola Politècnica, Universitat de Lleida wednesday april 30th, 2025

Index

- 1 Twists, examples j = 0,1728
- Quotients, isogeny graphs
- 3 Algorithm

Elliptic curves, j-invariant, Frobenius

$$p \text{ any prime} > 3, q = p^n, a, b \in \mathbb{F}_q$$

$$E : y^2 = x^3 + ax + b, \quad \mathbf{j_E} = 1728 \frac{4a^3}{4a^3 + 27b^2} \in \mathbb{F}_q$$

$$E^p : y^2 = x^3 + a^p x + b^p, \quad j_E{}^p = j_{E^p}$$

$$\phi_p : E(\overline{\mathbb{F}}_q) \longrightarrow E^p(\overline{\mathbb{F}}_q) \quad \text{If } a, b \in \mathbb{F}_p \text{ then } \phi_p = \pi_E \in End_{\mathbb{F}_p}(E)$$

$$(x, y) \longmapsto (x^p, y^p)$$

$$\mathbf{Example} : p \equiv 2 \mod 3, E : y^2 = x^3 + 1_{|\mathbb{F}_p}, j_E = 0$$

$$1 \neq \text{cube} \mod p. \text{ If } \xi \in \mathbb{F}_{p^2} \text{ with } \xi^2 + \xi + 1 = 0 \text{ then } \xi^p = \xi^2$$

$$\Rightarrow \xi(x, y) = (\xi x, y) \in End(E) \text{ satisfies } \pi_E \xi = \xi^2 \pi_E \Rightarrow E \text{ supersingular}$$

Isomorphisms and Quadratic Twists

Isomorphisms:
$$E': Y^2 = X^3 + a^t X + b^t$$
, $a', b' \in \mathbb{F}_q$
 $E' \in Isom_k(E) \Leftrightarrow (X, Y) = (v^2 x, v^3 y)$ for $v \in k \mid a' = av^4$, $b' = bv^6$
Twists: $E^t: Y^2 = X^3 + au^2 X + bu^3|_{\mathbb{F}_p}$
 $E^t \in Twist(E) \Leftrightarrow E^t \in Isom_k(E)$, k extension of \mathbb{F}_q . Then $j_E = j_{E^t}$.
Beware: ([CPV, Lemma 1]) if $p \equiv 3 \mod 4$ and $b = 0$ and $u \in \mathbb{F}_p$
 $\Rightarrow E^t \in Isom_{\mathbb{F}_p}(E)$ regardless of $\left(\frac{u}{p}\right) = \pm 1$
because u^2 is always a square of $\mathbb{F}_p \Rightarrow u^2 = v^4$ for some $v \in \mathbb{F}_p$
 $\Rightarrow (X, Y) = (v^2 x, v^3 y)$ isomorphism defined over \mathbb{F}_p
Non trivial twist: $\omega \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p \mid \omega^2 = u, E^t: Y^2 = X^3 + auX|_{\mathbb{F}_p}$

isomorphism $(X, Y) = (ux, u\omega y)$ now defined over \mathbb{F}_{n^2}

j-invariant 1728

Example: $p \equiv 3 \mod 4$

$$E_1: y^2 = x^3 + x_{|\mathbb{F}_p}, \quad E_2: y^2 = x^3 - x_{|\mathbb{F}_p}, \quad j_{E_1} = j_{E_2} = 1728$$

- E_1, E_2 are non-trivial quadratic twists one of each other
- $E_1^t = E_2$ with an isomorphism

$$(X,Y)=(ix,i(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2})y)$$

- E_1, E_2 are 2-isogenous: $E_1 \in Isom_{\mathbb{F}_p}(E_2/[2]E_2)$
- If j = 1728 then $E_1 \xrightarrow{\varphi} E_1^t$, φ isogeny with coefficients in \mathbb{F}_p

j-invariant 1728

Example (*continued*): $p \equiv 3 \mod 4$

$$E_1: y^2 = x^3 + x_{|\mathbb{F}_p}, \quad E_2: y^2 = x^3 - x_{|\mathbb{F}_p}, \quad j_{E_1} = j_{E_2} = 1728$$

• $i^p = -i$ so $\iota(x, y) = (-x, iy) \in End(E_1) \cap End(E_2)$ satisfies

$$\pi_{E}\iota = -\iota\pi_{E}$$

- Hence E_1 and E_2 are supersingular over \mathbb{F}_p
- Is ι related to $E_1 \xrightarrow{\varphi_{\mid \mathbb{F}_p}} E_1^t$?
- Is this situation holding for other j_E ? We follow [CPV, Sect. 3] and ask for other E and $\alpha \in End(E)$ such that

$$\pi_E \circ \alpha = -\alpha \circ \pi_E$$

Quotient isogenies

- $\mathcal{I}_G : E \to E/G$ defined over \mathbb{F}_p if and only if $\pi_E(G) \subseteq G$.
- $G_1, \ldots, G_{\ell+1}$ the $\ell+1$ subgroups of order ℓ in $E(\overline{\mathbb{F}}_q)$
- E/G_i the $\ell+1$ curves adjacent to E by ℓ -isogenies \mathcal{I}_{G_i} with coefficients in any extension of \mathbb{F}_q
- $\Phi_{\ell}(X,Y)$ the classical modular polynomial w.r.t. ℓ
- $j(E/G_1), \ldots, j(E/G_{\ell+1})$ are roots of $\Phi_{\ell}(X, j(E))$.
- Solution of $\Phi_\ell(X,X) \mod p = 0$ represent $\overline{\mathbb{F}}_{q^-}$ isomorphism classes of curves with the same j-invariant (so twists) with isogenies of degree ℓ and coefficients over any extension.
- Our algorithm identifies the roots of $\Phi_{\ell}(X,X) \mod p$ where the "1728 scenario $E \xrightarrow{\varphi_{|\mathbb{F}_p}} E^t$ " takes place.

1728 scenario for other j

Proposition

If $E_{|\mathbb{F}_p}$ with $j(E) \neq 1728$, and E^t non trivial $E^t \in Twist(E)$ s.t. $\varphi_{|\mathbb{F}_p} \colon E \to E^t$ isogeny over \mathbb{F}_p , then $\exists \alpha \in End(E)$ such that

$$\pi_E \circ \alpha = -\alpha \circ \pi_E$$

$$\varphi_{\mid \mathbb{F}_p} \Rightarrow E_{\mid \mathbb{F}_p}^t$$

 $\boldsymbol{E}^t \text{non trivial} \Rightarrow \exists u \notin \mathbb{F}_p \mid (X,Y) = (u^2x,u^3y), \ \boldsymbol{a}' = u^4\boldsymbol{a}, \ \boldsymbol{b}' = u^6\boldsymbol{b}$

$$\Rightarrow u^2 \in \mathbb{F}_p \Rightarrow (u^2)^{(p-1)/2} = -1 \Rightarrow u^p = (u^2)^{(p-1)/2} u = -u$$

twisting endos

Isogenies not defined in \mathbb{F}_p come in pairs

$$Q(E) = \{ \mathcal{I}_{\langle P \rangle} : E \longrightarrow E/\langle P \rangle \mid \pi_E(P) \notin \langle P \rangle, ord(P) = \ell \}$$

$$\mathcal{T}(E, C) = \{ \mathcal{I} : E \to E' \mid \mathcal{I} \in \mathcal{Q}(E), E' \in Twist(C) \}$$

Lemma

If E, C supersingular over \mathbb{F}_p then $\#\mathcal{T}(E,C)$ is even.

Let $P_1 \in E(\overline{\mathbb{F}}_p)$ of order ℓ such that $\mathcal{I}_{\langle P_1 \rangle} \in \mathcal{Q}(E)$. Assume

$$C \cong E/\langle P_1 \rangle = E_1$$

Then $j_{E_1} \in \mathbb{F}_p$. We will find another isogeny $\in \mathcal{Q}(E)$ different from $\mathcal{I}_{\langle P_1 \rangle}$.

Isogenies not defined in \mathbb{F}_p come in pairs

Let
$$P_2 = \pi_E(P_1)$$
, $E_2 = E/\langle P_2 \rangle$. Then $E_2 = {E_1}^p$.
But $j(E_1) \in \mathbb{F}_p$, so $j(E_2) = j({E_1}^p) = j({E_1})^p = j({E_1})$
 $\Rightarrow E_2 \in Twist(E_1)$
 E supersingular $\Rightarrow \pi_E^2 = -[p]_E$
Hence $\pi_E(P_2) = \pi_E^2(P_1) \in \langle P_1 \rangle \notin \langle P_2 \rangle$
Therefore $\mathcal{I}_{\langle P_2 \rangle} : E \to E_2 \in \mathcal{T}(E,C)$

$\mathcal{G}_i(\mathbb{F}_p,\ell)$

- If $p \equiv 3 \mod 4$ then $K = \mathbb{Q}(\sqrt{-p})$ has discriminant $d_K = -p$
- $\mathcal{O}_K = \mathbb{Z}\left[\frac{1+\sqrt{-p}}{2}\right], \, \mathbb{Z}[\pi_E] \subseteq \mathcal{O}_K$ with index 2

•

$$\mathbb{Z}[\pi] \subseteq End_{\mathbb{F}_p}(E) \subseteq \mathcal{O}_K$$

one = one ⊂ because of index constrain [K, DG]

- $\mathbb{Z}[\pi] = End_{\mathbb{F}_p}(E) \iff E[2](\mathbb{F}_p) \text{ rank } 1 \text{ [CPV, DG]}$
- Example E_1, E_2 with j = 1728.
- If $j_E \neq 1728$ then $End_{\mathbb{F}_p}(E) = End_{\mathbb{F}_p}(E^t)$ [ACLLNSS, Corollary 3.7]
- Write $O_2 = \mathbb{Z}[\pi_E]$ and $O_1 = \mathcal{O}_K$ and class numbers h_1, h_2

$\mathcal{G}_i(\mathbb{F}_p,\ell)$

- The nodes of $\mathcal{G}(\overline{\mathbb{F}}_p,\ell)$ are j-invariants, and the arcs are ℓ -isogenies defined over $\overline{\mathbb{F}}_p$
- The 1728 scenario $E \xrightarrow{\varphi_{\mid \mathbb{F}_p}} E^t$ becomes a node with a loop in $\mathcal{G}(\overline{\mathbb{F}}_p,\ell)$, hence a zero of $\Phi_\ell(X,X) \mod p$
- The 1728 scenario in $\mathcal{G}_i(\mathbb{F}_p,\ell)$ corresponds to

$$\left[\mathfrak{a}\right]^{-1}\mathcal{E} = \left(\left[\mathfrak{a}\right]\mathcal{E}^{t}\right)^{t}\left(\left[\mathsf{CPV}, \mathsf{Lemma 5}\right]\right)$$

- and an endomorphism $\alpha \in End(E)$ to a principal ideal in the maximal quaternionic order
- $\mathcal{G}_i(\mathbb{F}_p, \ell)$: nodes: $\mathcal{E}\ell\ell_p(O_i)$ ($Isom_{\mathbb{F}_p}(E) \mid End_{\mathbb{F}_p}(E) \cong O_i$) arcs: ℓ -isogenies $|_{\mathbb{F}_p}$
- Class group action on $\mathcal{E}\ell\ell_p(O_i)$ by ideal multiplication.

$\mathcal{G}_i(\mathbb{F}_p,\ell)$

- $\ell \neq 2$ then a rational ℓ -isogeny is ideal class of norm ℓ and order say n_i in $\mathcal{C}\ell(O_i)$
- If $\left(\frac{-p}{\ell}\right) = 1$ then (ℓ) splits $\ell = \overline{\mathfrak{ll}}$ in O_i
- If also $\ell \neq 2$ and $p \equiv 3 \mod 4$ then $\mathcal{G}_1(\mathbb{F}_p, \ell)$, $\mathcal{G}_2(\mathbb{F}_p, \ell)$ are disconnected, so every node has just 2 horizontal arcs [K, DG]
- The h_i classes in $\mathcal{G}_i(\mathbb{F}_p,\ell)$ are $\frac{h_i}{n_i}$ cycles of length n_i .
- If $p \equiv 3 \pmod{4}$ then h_i is odd, hence the length of both cycles n_i is odd.
- If $n_i > 1$ then the 1728 scenario takes place for non principal ideals

Example

Proposition

If $p \equiv 3 \mod 4$ then the 1728 scenario $E \xrightarrow{\varphi_{|\mathbb{F}_p}} E^t$ takes place only in the cycle of $\mathcal{G}_i(\mathbb{F}_p,\ell)$ where $Isom_{\mathbb{F}_p}(C)$ with $j_C = 1728$ lies.

Odd nodes + [CPV, Lemma 5]

Proposition

If $p \equiv 3 \mod 4$ and E has a twisting endomorphism then the multiplicity of j_E a zero of $\Phi_{\ell}(X,X) \mod p$ is odd.

The 1728 scenario shows an arc joining E and E^t is $\varphi_{|\mathbb{F}_p}$. There might be more isogenies between them, but necessarily these are non-rational. By Lemma these come in pairs.

Proposition

- If multiplicity of j_E as a zero of $\Phi_\ell(X,X) \mod p$ is odd and > 3 then we found j_E because then E is necessarily supersingular.
- If multiplicity is 1 we have to sort supersingular j's with factorization pattern of $\Phi_{\ell}(X,X) \mod p$ [BSS] (treat case j=0 directly).

- set c = 0
- Find $\mathcal{O}_k, \mathbb{Z}[\pi]$ and find factorization of ℓ in both orders:

 - $(\ell) = \mathfrak{e}_2 \bar{\mathfrak{e}_2} \text{ in } O_2$
- If e_1 is ppal (in O_1) then add j = 1728 to list J
- If e_2 is ppal (in O_2) then add j = 1728 to J
- If both are ppal we are done

- If e_1 is NOT ppal (in O_1) then all cycles have length $n_1 > 1$ and we are looking for a $j \neq 1728$
- The cycle C_1 containing an isomorphism class with j = 1728 has the 1728 scenario. Put c = c + 1.
- If e_2 is NOT ppal (in O_2) then all cycles have length $n_2 > 1$ and we are looking for a $j \neq 1728$. Now j can be j = 0.
- if $p \equiv 2 \mod 3$ and $\Phi_{\ell}(X, X) \mod p = X^k \cdot g(X) \mod p$ with k odd then add j = 0 to the list
- else j is $\neq 0$. Put c = c + 1

- Set counter r = 0, and remove roots 0,1728 from $\Phi_{\ell}(X,X)$ mod p. Call it f(X).
- While $r \neq c$ find root of f(x) and check for odd multiplicity m.
- If $m \ge 3$ add the root to J and set r = r + 1.
- If m = 1 the root may correspond to ordinary j and rule out this case. If not, add the root to J and r = r + 1
- return J

More twisting endomorphisms

Examples given by our algorithm:

$$\mathbb{F}_{47}, \quad E: y^2 = x^3 + 16x + 15, \quad w^2 + 45w + 5 = 0$$

$$\alpha(x, y) = \left(\frac{31x^3 + 7x^2 + 18x + 17}{x^2 + 26x + 28}, \frac{(32w + 15)x^3 + (26w + 21)x^2 + (w + 46)x + (23w + 24)}{x^3 + 39x^2 + 37x + 35}y\right)$$

Endomorphisms

- For α a twisting endomorphism of E of order ℓ , let $\beta = r + s\alpha$ of prime degree $m = r^2 + s^2\ell$
- Then α spreads in the ℓ -isogeny graph inducing endomorphisms of degree m^{c_k} for $c_k \mid \ell^k$
- All elliptic curves ℓ^k -isogenous to E have an endomorphism of degree m^{c_k}

Example $\ell = 3, r = 2, s = \pm 1, m = 7$

Thank you!

- S. Arpin, C. Camacho-Navarro, K. Lauter, J. Lim, K. Nelson, T. Scholl, J. Sotáková. "Adventures in Supersingularland". Experimental Mathematics 32(2), pp. 241-268, 2023.
- I. F. Blake, G. Seroussi, N. P. Smart. "Elliptic Curves in Cryptography". London Mathematical Society Lecture Note Series, vol. 265, 1999.
- W. Castryck, L. Panny, F. Vercauteren. "Rational Isogenies from Irrational Endomorphisms". EUROCRYPT 2020, LNCS. vol. 12106, pp. 523-548, 2020.
- C. Delfs, S. D. Galbraith. "Computing isogenies between supersingular elliptic curves over \mathbb{F}_p ". Designs, Codes and Cryptography, vol. 78, pp. 425-440, 2016.
- D. Kohel. Endomorphism rings of elliptic curves over finite fields. PhD, University of California Berkeley, 1996.