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Twists, examples j=0,1728

Elliptic curves, j-invariant, Frobenius

p any prime > 3,q=p",a, b€ F,
4a

——— €F

43 + 2102 7

2 3 . .
EpZy =X +apX+bp, _/Ep=jEP

E:y’=x +ax+b, je=1728

¢p :E(Fy) — EP(F,) If a,b€F, then ¢, =7 € Endp (E)
(xy) — (X,Y)
Example :p=2 mod 3,E:y” =x’ + 1z, je = 0
1#cube mod p. If € € Fpe with € + & +1 = 0 then ¢° = ¢

- 2 .
= &(x,y) = ({x,y) € End(E) satisfies mg€ = £ g = E supersingular



Twists, examples j=0,1728

Isomorphisms and Quadratic Twists

Isomorphisms : E':v?=x+aXx+ b', a’, b e Fq
E' € Isomy(E) = (X, Y) = (v2x, v3y) forve k|a = ', b = bv°
Twists : E7: Y2 = XC + a’ X + bu3|]Fp
E' € Twist(E) < E° € Isomy(E), k extension of Fo.Then jg = jg.
Beware : ([CPV, Lemma 1]) if p=3 mod 4 and b=0and ueF,
= E'e lsome(E) regardless of(g) =zl
because v is always a square of F, = u” = V' for some v € F,
= (X, Y) = (v2x, v3y) isomorphism defined over F),
Non trivial twist: w € F2 \ I, | Ww=u EN Y= X+ auXir,

isomorphism (X, Y) = (ux, uwy) now defined over I

Miret Pujolas Valera UdL Twisting endos of prime degree



Twists, examples j=0,1728

j-invariant 1728

Example: p=3 mod4
Ty 3 L2 3 . .
El Yy =x + X|FP, E2 Yy =X — X|Fp’ JE, = JE, = 1728

(]

Eq, E> are non-trivial quadratic twists one of each other

Ei = E> with an isomorphism

(V) = (2 + 42))

Eq, E; are 2-isogenous: E; € Isome(E2/[2]E2)

If j= 1728 then E; 5 E',  isogeny with coefficients in I,
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Twists, examples j=0,1728

j-invariant 1728

Example (continued): p=3 mod 4
2 3 2 3 . .
Eli_y =X +X|]Fp, E2Z_y =X _X|]Fp’ ./E1=_/E2=1728
o i’ =—isou(xy) = (~x,iy) € End(E;) n End(E,) satisfies
TEL = —LTE

@ Hence E; and E, are supersingular over IF,
F,
@ Is ¢ related to E; —— E; 7

@ Is this situation holding for other jg ? We follow [CPV, Sect.
3] and ask for other E and « € End(E) such that

MTEOQ = —QOTE
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Quotients, isogeny graphs

Quotient isogenies

o 7 : E— E/G defined over IF,, if and only if 7¢(G) € G.

@ Gy, ..., Gyiq the £ + 1 subgroups of order £ in E(ﬁq)

e E/Gjthe £ + 1 curves adjacent to E by (-isogenies Z¢, with
coefficients in any extension of I,

e ®,(X,Y) the classical modular polynomial w.r.t. £

e j(E/Gy),...,J(E]Gyyy) are roots of &,(X, j(E)).

@ Solution of ®,(X, X) mod p = 0 represent Fq—isomorphism

classes of curves with the same j-invariant ( so twists ) with
isogenies of degree ¢ and coefficients over any extension.

@ Our algorithm identifies the roots of ®,(X, X) mod p where
¢ F
the “1728 scenario E —— E' " takes place.
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Quotients, isogeny graphs

1728 scenario for other j

Proposition
If EHFp with j(E) # 1728, and E* non trivial E' € Twist(E) s.t.
PIF, E — E' isogeny over F,, then 3« € End(E) such that

TEO O = —QXOTE

t
(‘D|Fp = E|FP
E'non trivial = Ju ¢ Fp | (X, Y) = (u2x, u3y), 2 = u437 b = b

=’ e F,= (uz)(P_l)/2 =-1= "= (uz)(p_l)/2u =—u
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Quotients, isogeny graphs

twisting endos

E E* E
TE lT"Et TE
E E* E
¥ —y
a=9Y,0p=>Tgoa=—qoTE
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Quotients, isogeny graphs

Isogenies not defined in IF, come in pairs

Q(E) = {Z(p) : E—> E[(P) | me(P) & (P), ord(P) = ¢}
T(E,C)={T:E— E'|T € Q(E),E' € Twist(C)}

If E, C supersingular over F,, then #7T (E, C) is even.

Let P; € E(Fp) of order £ such that Z;p,y € Q(E). Assume

C=E/(P)=F

Then jg, € F,. We will find another isogeny € Q(E) different from
Lipy)-
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Quotients, isogeny graphs

Isogenies not defined in IF, come in pairs

Let P, = 7e(Py), Ey = E/{P,). Then E, = E,".
But j(E1) € Fp, so j(E) = j(E:") = j(E1)° = j(Ey)
= E, € Twist(Ey)

E supersingular = 77% = —[ple
Hence me(Py) = me(P1) € (P1) ¢ (P2)
Therefore Zip,) : E— E; € T(E, C)
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Quotients, isogeny graphs

o If p=3 mod 4 then K = Q(y/=p) has discriminant dx = —p
Ok =7Z[ 1+\2—W]7 Z[mg] € Ok with index 2

Z[w] < Endy,(E) € Ok
one = one C because of index constrain [K, DG]
Z[7] = Endg,(E) < E[2](F,) rank 1 [CPV, DG]
Example Eq, E, with j = 1728.
If jg # 1728 then Ende(E) = Ende(Et) [ACLLNSS,
Corollary 3.7]
Write O, = Z[wg] and O; = Ok and class numbers hy, hy
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Quotients, isogeny graphs

@ The nodes of Q(Fp,ﬁ) are j-invariants, and the arcs are

(-isogenies defined over I,

¢
@ The 1728 scenario E—2 E' becomes a node with a loop in
G(Fp, £), hence a zero of ®,(X,X) mod p

@ The 1728 scenario in G(IF,,, £) corresponds to
[a]'€ = ([a]€Y)' ([CPV, Lemma 5])

@ and an endomorphism « € End(E) to a principal ideal in the
maximal quaternionic order

o g,-(Fp,E) .
nodes: £00,(0;) (/some(E) | EndFP(E) =0)
arcs: (-isogenies |IFP
o Class group action on £¢(,(O;) by ideal multiplication.
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Quotients, isogeny graphs

£ # 2 then a rational /-isogeny is ideal class of norm ¢ and
order say n; in C{(O;)

o If (Z2) = 1 then (¢) splits £ = in O;
o Ifalso £ #2 and p=3 mod 4 then G1(F,,¢), Go(F, ) are
disconnected, so every node has just 2 horizontal arcs [K, DG]

@ The h; classes in Gi(Fp, £) are % cycles of length n;.

o If p=3 (mod 4) then h; is odd, hence the length of both
cycles n; is odd.

o If n; > 1 then the 1728 scenario takes place for non principal
ideals
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Quotients, isogeny graphs

p =439

T e o
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Algorithm

Algorithm

Proposition

°F,
If p=3 mod 4 then the 1728 scenario E —— E' takes place only
in the cycle of Gi(IFp, £) where Isom[g*p(C) with jc = 1728 lies.

Odd nodes + [CPV, Lemma 5]

Proposition

If p=3 mod 4 and E has a twisting endomorphism then the
multiplicity of jg a zero of ®,(X, X) mod p is odd.

The 1728 scenario shows an arc joining E and E'is PIF,- There

might be more isogenies between them, but necessarily these are
non-rational. By Lemma these come in pairs.
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Algorithm

Algorithm

o If multiplicity of jg as a zero of ®,(X, X) mod p is odd and
> 3 then we found jg because then E is necessarily
supersingular.

e If multiplicity is 1 we have to sort supersingular j's with
factorization pattern of ®,(X, X) mod p [BSS] (treat case
J = 0 directly).
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Algorithm

Algorithm

set c=0
Find Oy, Z[ 7] and find factorization of £ in both orders:

Q (0)=¢&in Oy
Q () =exézin O,

If ey is ppal (in O1) then add j = 1728 to list J
If e5 is ppal (in O,) then add j = 1728 to J
If both are ppal we are done
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Algorithm

Algorithm

@ If ¢ is NOT ppal (in O;) then all cycles have length ny > 1
and we are looking for a j # 1728

@ The cycle C; containing an isomorphism class with j = 1728
has the 1728 scenario. Put c=c+ 1.

@ If e5 is NOT ppal (in O;) then all cycles have length ny, > 1
and we are looking for a j # 1728. Now j can be j = 0.

e ifp=2 mod3and ®,(X,X) mod p= X< g(X) mod p
with k odd then add j = 0 to the list
o elsejis#0. Putc=c+1
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Algorithm

Algorithm

Set counter r = 0, and remove roots 0, 1728 from ®,( X, X)
mod p. Call it AX).

@ While r # ¢ find root of f{x) and check for odd multiplicity m.
@ If m= 3 add the root to J and set r=r+ 1.
@ If m =1 the root may correspond to ordinary j and rule out

this case. If not, add the rootto Jand r=r+1

return J
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Algorithm

More twisting endomorphisms

Examples given by our algorithm:
2 3 2
Fgr7, E:y =x +16x+15 w +45w+5=0

31x° + 7X° + 18x + 17
X2 + 26x + 28
(32w + 15)x° + (26w + 21)x° + (w + 46)x + (23w + 24)
x> + 395 + 37x + 35

alxy) = (

I

)
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Algorithm

Endomorphisms

@ For a a twisting endomorphism of E of order £ , let 5 = r+ s«
of prime degree m = P+ s

@ Then « spreads in the (-isogeny graph inducing
endomorphisms of degree m™ for ¢, | ¢

o All elliptic curves ék—isogenous to E have an endomorphism of
degree m™

Miret Pujolas Valera UdL Twisting endos of prime degree



Algorithm

Example /=3, r=2,s=+1,'m

310 Eig Bio
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Thank you!
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