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Hermitian vector spaces Prelude: Euclidean vector spaces

The ground of the familiar modeling of n-dimensional euclidean
geometry is a real vector space E endowed with a positive-definite
quadratic form or, equivalently, with a symmetric scalar product x · x ′
such that x · x > 0 for x ̸= 0. Then

Vectors have length, |x | = +
√
x · x ; this length is a norm for E ,

which is often denoted ∥x∥.

Non-zero vectors x , x ′ ∈ E define the angle α = α(x , x ′) ∈ [0, π]
by the formula cos(α) = (x · x ′)/|x ||x ′| (based on the
Cauchy-Schwarz inequality).

α = 0 if and only if x ′ = tx with t > 0 and α = π if and only if
x ′ = tx with t < 0; in any case, the angle does not vary if we rescale
the vectors: if t, t ′ are positive real numbers, then
α(tx , t ′x ′) = α(x , x ′).

But note that α(−x , x ′) = α(x ,−x ′) = π − α(x , x ′).
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Hermitian vector spaces Definitions

A hermitian vector space is a complex vector space H endowed with
a scalar product ⟨x |x ′⟩ ∈ C (x , x ′ ∈ H) satisfying the following
properties:

(1) It is C-linear in x ′;

(2) Conjugate-symmetric: ⟨x ′|x⟩ = ⟨x |x ′⟩ (the overline means
complex conjugation). In particular, it is conjugate-linear (same
as anti-linear) in x . Since ⟨x |x⟩ is self-conjugate for any x , it is a
real number.

(3) Positive-definite: ⟨x |x⟩ > 0 if x ̸= 0.

For any x ∈ H , we set |x | =
√

⟨x |x⟩ (norm or length of x ; it is also
customary to denote it by ||x ||). If |x | = 1, we say that x is unitary,
or a unit vector.

For example, u(x) = x/|x | (normalization of x) is unitary for any
x ̸= 0.
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Hermitian vector spaces Definitions

We say that x , x ′ ∈ H are orthogonal if ⟨x |x ′⟩ = 0, and we will write
x ⊥ x ′ to denote this relation.

A basis e1, . . . , en of H is said to be orthonormal if ⟨ej |ek⟩ = δjk for
any j , k . This means that the ej are unit vectors such that ej ⊥ ek for
j ̸= k .

The components λj ∈ C of a vector x ∈ H with respect to an
orthonormal basis e1, . . . , en are given by λj = ⟨ej |x⟩, so that
x = ⟨e1|x⟩e1 + · · ·+ ⟨en|x⟩en.

We will often use the relations x ∼ x ′ and x ≡ x ′ (x , x ′ ∈ H). The
first is a shorthand for stating that x ′ = λx , for some non-zero
λ ∈ C. For example, we have x ∼ u(x) for any non-zero x ∈ H (in
this case λ = 1/|x | is real). The second relation is a shorthand for
stating that x ′ = λx for some λ ∈ C such that |λ| = 1. In other
words, x ′ = e iφx for some φ ∈ R.
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Hermitian vector spaces Example

Cn with the scalar product

⟨ξ|ξ′⟩ = ξ̄1ξ
′
1 + · · ·+ ξ̄nξ

′
n,

is a Hermitian space.

For the treatment of q-bits, the basic space we initially need is C2.

For historical reasons, the elements of this space are called (Pauli) spinors
and we will re-index them as ξ = (ξ0, ξ1).

Thus, in this case the Hermitian scalar product reads

⟨ξ|ξ′⟩ = ξ̄0ξ
′
0 + ξ̄1ξ

′
1.

Moreover, we will use the notation e0 = (1, 0) and e1 = (0, 1).
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Hermitian vector spaces Cauchy-Schwarz inequality for H

Theorem

(1) Let H be a Hermitian vector space. Then, for all x , x ′ ∈ H ,
|⟨x |x ′⟩| ⩽ |x ||x ′|.

(2) Equlity holds if and only if x ′ ∼ x .

Proof. (1) Let α = arg⟨x |x ′⟩, so that e−iα⟨x |x ′⟩ = |⟨x |x ′⟩|.

We have ⟨tx + e−αix ′|tx + e−αix ′⟩ ⩾ 0 for any t ∈ R. On expanding,
we get |x |2t2 + e−αi⟨x |x ′⟩t + eαi⟨x ′|x⟩t + |x ′|2 ⩾ 0. In this
expression, e−αi⟨x |x ′⟩+ eαi⟨x ′|x⟩ = 2re(e−αi⟨x |x ′⟩) = 2|⟨x |x ′⟩|, by
the definition of α. Therefore the inequality is equivalent to
|x |2t2 + 2|⟨x |x ′⟩|t + |x ′|2 ⩾ 0. Since this holds for any t,
|⟨x |x ′⟩|2 − |x |2|x ′|2 ⩽ 0, and this proves (1).

(2) If the equality |⟨x |x ′⟩| = |x ||x ′| holds, then tx + e−αix ′ = 0 for
some t and hence x ′ ∼ x . And it is immediate to check that x ′ ∼ x
implies |⟨x |x ′⟩| = |x ||x ′|.
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Hermitian vector spaces Hermitian angle

If x , x ′ ∈ H are non-zero vectors, the Theorem (p. 8) tells us that
0 ⩽ |⟨x |x ′⟩|/|x ||x ′| ⩽ 1

and hence there is a unique real number β = β(x , x ′) ∈ [0, π/2] such
that

cos(β) = |⟨x |x ′⟩|/|x ||x ′|.

β = π/2 precisely when ⟨x |x ′⟩ = 0 (that is, precisely when x ⊥ x ′)

β = 0 if and only if x ′ ∼ x .

β(x , x ′) = β(y , y ′) when y ∼ x and y ′ ∼ x ′.
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Hermitian vector spaces The euclidean space HR

Let HR be H regarded as a real vector space. In this space we may
consider the bilinear form (x , x ′) = re⟨x |x ′⟩ (note that ⟨x |x ′⟩ is
R-bilinear). It is symmetric, because

(x ′, x) = re⟨x ′|x⟩ = re⟨x |x ′⟩ = re⟨x |x ′⟩ = (x , x ′).
And it is positive definite, for (x , x) = re⟨x |x⟩ = ⟨x |x⟩ > 0 if x ̸= 0.

The euclidean angle between x , x ′ ∈ HR will be denoted by α(x , x ′).

Orthogonal vectors in H are also orthogonal in HR.

The converse is not true: if u ∈ H is a unit vector, then
⟨u|iu⟩ = i ̸= 0, but (u, iu) = re(i) = 0.

β(u, iu) = 0, as |i | = 1, and α(u, iu) = π/2.

α(u,−u) = π, but β(u,−u) = 0.
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Hermitian vector spaces Operators

The C-endomorphisms of H are usually called operators.

If L is an operator, its adjoint, denoted L†, is defined as the unique
endomorphism of H such that

⟨L†y |x⟩ = ⟨y |Lx⟩.
The map L 7→ L† is conjugate-linear. If L† = L, we say that L is
selfadjoint or hermitian.

Example. Let F ⊆ H be a vector subspace. The orthogonal
projection

PF : H → H , x 7→ x ′, where x = x ′ + x ′′, x ′ ∈ F , x ′′ ∈ F⊥

is selfadjoint, as the expressions ⟨PFy |x⟩ and ⟨y |PFx⟩ are both equal
to ⟨y ′|x ′⟩. For instance, ⟨y |PFx⟩ = ⟨y ′ + y ′′|x ′⟩ = ⟨y ′|x ′⟩, as
⟨y ′′|x ′⟩ = 0.

If v ∈ H is a non-zero vector, instead of P⟨v⟩ we will simply write Pv .
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Hermitian vector spaces Computation of PF

If we know an orthonormal basis e1, . . . , er of F , then
PF (x) = ⟨e1|x⟩e1 + · · ·+ ⟨er |x⟩er .

In particular we have, for any non-zero vector v ∈ H ,
Pv (x) = ⟨v |x⟩v if v is unitary, or
Pv (x) =

1
|v |2 ⟨v |x⟩v otherwise.
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Hermitian vector spaces Matrix of an operator

Let A be the matrix of an operator L of the hermitian space H with
respect to an orthonormal basis e1, . . . , en, that is, A = (aij), where

L(ej) = a1je1 + · · ·+ anjen.

Then the matrix of L†, with respect to the same basis, is A†:
L†(ei) = āi1e1 + · · ·+ āinen.

This implies that L is self-adjoint if and only if the matrix A is
self-adjoint (that is, A† = A).
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Hermitian vector spaces Unitary operators

An operator U is said to be unitary if U†U = I .

It is clear that U is unitary if and only if its matrix A is a unitary
matrix (A†A = In). Equivalently, U is unitary if and only if
⟨Ux |Ux ′⟩ = ⟨x |x ′⟩ for all x , x ′ ∈ H . This condition implies that
|Ux | = |x | for all x ∈ H . The converse is also true because of the
identity

4⟨x |x ′⟩ = |x + x ′|2 − |x − x ′|2 + i |ix + x ′|2 − i | − ix + x ′|2,
which can be expressed as

∑ν=3
ν=0 i

ν |iνx + x ′|.

The unitary operators of H form a group with the composition
operation (the unitary group of H). It is denoted by U(H). If H has
dimension n, U(H) ≃ Un (the group of unitary matrices of order n).

The special unitary group of H is
SU(H) = {U ∈ U(H) : det(U) = 1}.

Clearly, SU(H) ≃ SUn, the group of unitary matrices whose
determinant is 1.
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Hermitian vector spaces Example: SU2

Example. The matrices of SU2 have the form[
ξ0 −ξ̄1
ξ1 ξ̄0

]
,

where ξ0, ξ1 ∈ C with ξ0ξ̄0 + ξ1ξ̄1 = 1.
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Quantum systems
State vectors
Pure states
The ket map
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Quantum systems Prelude

The modeling of quantum systems is analogous to the modeling of
euclidean geometry by finite dimensional positive-definite real
quadratic spaces, but using complex Hilbert spaces instead of real
spaces. Moreover, for quantum computing only hermitian spaces
(Hilbert spaces of finite dimension) are required.
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Quantum systems State vectors

Each quantum system is modeled on a complex Hilbert space H .

The non-zero elements of H are called state vectors, or simply
vectors.

For quantum computing we may restrict H to have finite
dimension, i.e. to be a hermitian vector space.
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Quantum systems Pure states and the ket map

The (pure) states are the elements of Σ = PH
(projective space of H).

This means that each non-zero x ∈ H determines a state, which here
we will denote by |x⟩ (Dirac ket notation), and that two non-zero
x , x ′ ∈ H determine the same state (|x⟩ = |x ′⟩) if and only if x ′ ∼ x .1

Remark. Each state can be represented by a unit vector, as x ∼ u(x).
But unit vectors representing the same state differ by a phase factor
(a unit complex number), and hence sates and unit vectors are quite
different concepts.

1In mathematics, the projective point represented by x is denoted by [x ]. N
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Quantum systems Pure states and the ket map

Example

PC2 ≃ C ⊔ {∞} = Ĉ:

For ξ = (ξ0, ξ1) ∈ C2 − {(0, 0)},

|ξ⟩ =

{
|(1, ξ1/ξ0)⟩ if ξ0 ̸= 0

|(0, 1)⟩ otherwise

In the other direction, Ĉ → PC2: z 7→ |(1, z)⟩ for z ∈ C, and
∞ 7→ |(0, 1)⟩.
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Quantum systems Quantum superposition

Given two different states, X = |x⟩ and X ′ = |x ′⟩, each state of the
projective line XX ′ is said to be a (quantum) superposition of X and
X ′. By definition, such states have the form |ξx + ξ′x ′⟩, with
ξ, ξ′ ∈ C and ξx + ξ′x ′ ̸= 0.

In the special case of the complex projective line, P1
C = PC2, any

state is the superposition of any two different states, for example of
|e0⟩ and |e1⟩, as any (ξ0, ξ1) is obviously equal to ξ0e0 + ξ1e1.

Usually the abridgements |0⟩ and |1⟩ are used instead of |e0⟩ and |e1⟩.
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Quantum systems Quantum superposition

Warning

Dirac’s ket notation is usually abused by writing ξ|x⟩+ ξ′|x ′⟩ instead
of |ξx + ξ′x ′⟩.

For example, in the case of P1
C, the expression

ξ0|0⟩+ ξ1|1⟩ = ξ0|e0⟩+ ξ1|e1⟩ means |ξ0e0 + ξ1e1⟩ = |ξ0, ξ1⟩.

But ξ|x⟩+ ξ′|x ′⟩ does not make sense mathematically, as Σ is not a
vector space (and even less a complex vector space), in practice it is
understood that the state expressed by |x⟩ “remembers” the vector x
that has been used to represent it and thus calculations can usually
be interpreted unambiguously.

For example, if e1, . . . , en is a basis of H and x = Σλjej , then custom
favors to write the expression Σλj |ej⟩, which in this case is
unambiguously decoded as |Σλjej⟩ = |x⟩.
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Quantum systems Quantoscopes

We define a quantoscope (to “observe” or “measure” the system) as
a set of pairs A = {(a1,V1), . . . , (ar ,Vr )} such that:

1. The aj are distinct real numbers. The set {a1, . . . , ar} is the dial
of the quantoscope, and we assume it is ordered; and

2. The Vj are non-zero vector subspaces of H such that Vj ⊥ Vk

for j ̸= k (orthogonality condition), and H = ⊕jVj . The latter
means that any x ∈ H can be written in a unique way as
x = x1 + · · ·+ xr with xj ∈ Vj , and the orthogonality condition
implies the Pythagoras theorem:

|x |2 = |x1|2 + · · ·+ |xr |2.
Note also that xj = PVj

(x) (the orthogonal projection of x on
Vj). For a unit vector u ∈ H , we have

1 = |u1|2 + · · ·+ |ur |2,
which means that the quantities pj = |uj |2 form a probability
distribution on the set {1, . . . , r}.
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Quantum systems Measurements

An observation or measurement with the quantoscope A, assuming
that the system is in the state |u⟩ (u unitary), consists in carrying out
the following two operations:

(i) to select at random a value aj with probability pj = |uj |2, where
uj = PVj

(u) (we say that aj is the result or outcome of the
observation), and

(ii) to update the state of the system to |uj⟩.
Note that pj ̸= 0 if aj is selected and hence uj ̸= 0.

If u ∈ Vj , then uj = u and pj = 1, which means that the outcome aj
of the measurement is certain and that the system’s state does not
change.

SXD (IMTech & BSC) Quantum Models 19/4/2023 24 / 94



Quantum systems Observables

Let us associate to each quantoscope A the operator Â = ΣjajPVj
.

This operator is selfadjoint and A 7→ Â is a one-to-one map of the set
of quantoscopes to the space of selfadjoint operators of H .

Conversely, given a selfadjoint operator A′, its distinct eigenvalues
a1, . . . , ar are real, and the corresponding eigenspaces V1, . . . ,Vr are
an orthogonal decomposition of H . Thus we see that
A = {(a1,V1), . . . , (ar ,Vr )} is a quantoscope, and we will say that it
is the quantoscope associated to (or defined by) A′.

Example

The quantoscope associated to the orthogonal projection PV of H
onto the subspace V is {(1,V ), (0,V⊥)}. Assuming that the system
is in the state |u⟩, u unitary, a measurement with this quantoscope
selects 1 or 0 at random with probabilities |PV (u)|2 and |PV⊥(u)|2,
while resetting the state to |PV (u)⟩ or |PV⊥(u)⟩, respectively.

SXD (IMTech & BSC) Quantum Models 19/4/2023 25 / 94



Quantum systems Observables

To concur with the conventional terminology, henceforth we will refer
to self-adjoint operators of H as observables of the system.

By a measurement of an observable we understand a measurement
with the associated quantoscope. As specified before, such a
measurement supplies, if the state of the system is |u⟩ (u unitary), a
random eigenvalue aj of the observable with probability pj = |uj |2,
uj = PVj

(u), and resets the state of the system to |uj⟩. Note that in
general the vector uj is not unitary.
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Quantum systems Pauli observables

The (matrices of the) observables of C2 have the form[
s + t a + bi
a − bi s − t

]
, s, t, a, b ∈ R.

They form a 4-dimensional real vector space with basis

σ0 =

[
1

1

]
, σ1 =

[
1

−1

]
, σ2 =

[
1

1

]
, σ3 =

[
i

−i

]
.

The eigenvalues of σ1, σ2, σ3 are ±1 and the eigenvectors are

+1 −1
σ1 e0 e1
σ2 e0 + e1 e0 − e1
σ3 ie0 + e1 ie0 − e1
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The q-bit heuristic model
Stern-Gerlach experiments

Composition of S-G experiments
Pure states of a q-bit and its state vectors
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The q-bit heuristic model Stern-Gerlach experiments

Non-uniform

magnetic field

Oven

Scheme of the Stern-Gerlach experiment. N
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The q-bit heuristic model Stern-Gerlach experiments

In general, the values j observed in an SG experiment have (in
appropriate units) the form j = −s,−s + 1, . . . , s − 1, s, with s a
non-negative integer or half-integer characteristic of the system. In
all cases, the number of values j is s − (−s) + 1 = 2s + 1.

0

s = 0

0

s = 1
2

− 1
2

1
2 0

s = 1

−1 1

1−1 −1 1 0

s = 3
2

− 1
2

1
2

−1 1

− 3
2

3
2

−2 2

Possible values of spin for s = 0, 1
2 , 1,

3
2 .

Excluding s = 0, corresponding to a spinless system, the simplest
case (as in the original SG experiments) is s = 1/2, with two possible
values: j = ±1

2
. It is such systems, called quantum bits, or simply

q-bits, that we will consider in this section (the reasons for this
naming will become clear below).
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The q-bit heuristic model Composition of S-G experiments

Composition of S-G experiments
(from WP, Stern–Gerlach experiment)

The SG experiments suggest to model the states of q-bit
by the points of Σ = S2
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The q-bit heuristic model From S2 to C2 via stereographic projection

Henceforth we will use an orthonormal basis ux , uy , uz of E3, with uz
aligned with the SG magnetic field. As usual, a point xux + yuy + zuz
will also be denoted by (x , y , z).
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The q-bit heuristic model From S2 to C2 via stereographic projection

Now on one hand S2 ≃ Ĉ = C ⊔ {∞}, via the stereographic
projection of S2 from the north pole uz = (0, 0, 1) onto the equatorial
plane z = 0 (that we identify with C) and with uz 7→ ∞.

ξ = a+ bi

u = (x, y, z) = uφ,θ

x

y

z

uz = (0, 0, 1)

−uz = (0, 0,−1)

i−i

1

−1

O

φ

θ

C

z

z

1− z

x+ yi

P

Stereographic projection u = uφ,θ 7→ ξ = a+ bi of S2 to Ĉ ⊔ {∞}. The angles φ
and θ (longitude and colatitude of u with respect to the orthonormal basis
ux , uy , yz) are the spherical coordinates of u.
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The q-bit heuristic model From S2 to C2 via stereographic projection

On the other hand, Ĉ ≃ [C2], via the map ξ 7→ [1, ξ] (ξ ∈ C) and
∞ 7→ [0, 1] = [e1]. By composing both bijections, we have a bijection
S2 ≃ [C2], and so we can take the (Pauli) spinor space C2 as the
space of state vectors of the q-bit, and identify its state space [C2]
with the sphere S2.

Theorem (Stereographic projection in spherical coordinates)

Let u = (x , y , z) ∈ S2 − {uz} and ξ = a + bi ∈ C its stereographic
projection. Then

(1) a = x/(1− z), b = y/(1− z).

(2) ξ = e iφ cot θ
2

(3) (1, ξ) ∼ (sin θ
2
, e iφ cos θ

2
) ∼ (e−iφ/2 sin θ

2
, e iφ/2 cos θ

2
).

Proof. (1) In terms of Fig/p. 33, the right triangles uzOξ and uzPu
are similar, so ξ/1 = (x + yi)/(1− z).
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The q-bit heuristic model From S2 to C2 via stereographic projection

(2) From (1) and (x , y , z) = (cosφ sin θ, sinφ sin θ, cos θ), we get
ξ = (cosφ sin θ + i sinφ sin θ)/(1− cos θ) = e iφ 2 sin θ

sin2(θ/2)
= e iφ cot θ

2
.

(3) Immediate consequence of (2) and the definitions.
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The q-bit heuristic model From S2 to C2 via stereographic projection

Theorem (Inverse stereographic projection)

The expressions of (x , y , z) in terms of (a, b), or of ξ, are as follows:
(1) x = 2a/(1 + a2 + b2), y = 2b/(1 + a2 + b2),

z = (a2 + b2 − 1)/(a2 + b2 + 1).
(2) x = (ξ + ξ̄)/(ξξ̄ + 1), y = i(ξ̄ − ξ)/(ξξ̄ + 1),

z = (ξξ̄ − 1)/(ξξ̄ + 1).

Proof
(1) From the relations 1− z2 = x2 + y 2 = (1− z)2(a2 + b2), we get
(1 + z)/(1− z) = a2 + b2 and from this relation we find the
expression for z . Then the expressions for x = a(1− z) and
y = b(1− z) follow readily.

(2) An immediate consequence of the relations
a2 + b2 = ξξ̄, 2a = ξ + ξ̄ and 2bi = ξ − ξ̄.
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The q-bit heuristic model Expressions for Dirac’s ket map

Let us use Dirac’s notation |ξ0, ξ1⟩ ∈ S2 to denote the state
corresponding to (ξ0, ξ1) ∈ C2. If ξ0 ̸= 0, |ξ0, ξ1⟩ = |1, ξ⟩
(ξ = ξ1/ξ0). In particular, |1, 0⟩ = |e0⟩ is the point −uz = (0, 0,−1)
(the south pole of S2). The state |0, 1⟩ = |e1⟩ is (0, 0, 1) = uz , the
north pole of S2. In next statement we derive formulas for the
coordinates x , y , z of |ξ0, ξ1⟩.

Theorem (Representation of S2 by spinors)

If (x , y , z) = |ξ0, ξ1⟩, then
x = (ξ0ξ̄1 + ξ1ξ̄0)/(ξ0ξ̄0 + ξ1ξ̄1),

y = i(ξ0ξ̄1 − ξ1ξ̄0)/(ξ0ξ̄0 + ξ1ξ̄1), (1)

z = (ξ1ξ̄1 − ξ0ξ̄0)/(ξ0ξ̄0 + ξ1ξ̄1).

Proof. Replace ξ in the expressions of x , y , z in Theorem/(2)/p. 36,
and multiply numerators and denominators by ξ0ξ̄0.
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A quaternion model of a q-bit
i2 = j2 = k2 = ijk = −1
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A quaternion model of a q-bit Desiderata

To replace C2 by the quaternion algebra H.
This requires choosing a complex structure for H, defining a
Hermitian structure relative to that structure, and reproducing the
measurement statistics.

Complex structure. Let C = ⟨1, i⟩ ⊂ H. Then H is a C-vector space
and {1, j} is a C-basis:

q = a1 + b i + c j + d k = (a + b i)1 + (c + d i)j = ξ0 + ξ1 j.

Henceforth we will write ξ0 = cx(q).
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A quaternion model of a q-bit Retrieving the complex components of q

Theorem (Complex components of q)

If q = ξ0 + ξ1 j, ξ0, ξ1 ∈ C, then

cx(q) = ξ0 =
1

2
(q− iq i), ξ1 = −1

2
(q j + iqk). (2)

Proof. Since the expression 1
2
(q− iq i) is R-linear in q, it is enough to

check that it supplies q for q = 1, i and 0 if q = j, k. In fact, if q
commutes with i, as is the case for the elements of C, the formula
supplies q, and if q anti-commutes with i, as is the case for all
elements of ⟨ j, k⟩, it supplies 0. The second part follows similarly:
−1

2
(q j + iqk) yields 0 for q = 1, i and q for q = j, k.
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A quaternion model of a q-bit Retrieving the complex components of q

Proposition

(1) We have ξ j = jξ̄ and jξ = ξ̄ j for any ξ ∈ C. Indeed, for the first
relation, use that i and j anticommute. For the second, replace ξ by
ξ̄ in the first.
(2) If ξ ∈ C and q ∈ H, then cx(ξq) = cx(qξ) = ξcx(q). This follows
from the first relation in Eq. (2).
(3) For q = ξ0 + ξ1 j, ξ0, ξ1 ∈ C, q̄ = ξ̄0 − jξ̄1 = ξ̄0 − ξ1 j.
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A quaternion model of a q-bit Hermitian scalar product

Theorem
Let ⟨·|·⟩ : H×H → C be defined by ⟨q|q′⟩ = cx(q′q̄). Then:
(1) ⟨q|q⟩ = cx(qq̄) = qq̄ = |q|2.
(2) The scalar product ⟨q|q′⟩ is hermitian.
(3) For ξ0, ξ1, ξ

′
0, ξ

′
1 ∈ C we have ⟨ξ0 + ξ1 j|ξ′0 + ξ′1 j⟩ = ξ̄0ξ

′
0 + ξ̄1ξ

′
1.

(4) For the euclidean scalar product of H, we have
(a + b i + c j + d k, a′ + b′ i + c ′ j + d ′k) = aa′ + bb′ + cc ′ + dd ′

This is equivalent to say that the basis 1, i, j, k is orthonormal.
(5) If v = (x , y , z) ∈ E3, let v

∗ = x i + y j + z k. Then (v ∗)2 = −|v |2
and |v ∗|2 = |v |2. In particular (v ∗)2 = −1 for any unit vector v ∈ E3.
(6) Given q = ξ0 + ξ1 j, let q

⊥ = −ξ̄1 + ξ̄0 j. Then q⊥ is orthogonal to
q and |q⊥| = |q|.
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A quaternion model of a q-bit The ket map κ

Next question is how to realize the state space of H, which is the
(abstract) sphere [H], as the sphere S2 ⊂ E3. In other words, if

S3 = S3(H) = {q ∈ H : |q|2 = 1},
we are seeking a map S3 → S2, q 7→ |q⟩, that is onto and such that
|q⟩ = |q′⟩ if and only if q′ ≡ q (this map is usually called the Hopf
fibration).

For that, a more convenient generalized ket map κ : H → E3 is
defined as follows. If q = ξ0 + ξ1 j (ξ0, ξ1 ∈ C), let κ(q) = 0 if q = 0,
and otherwise set, with r = |q|, κ(q) = αux + βuy + γuz , where

α =
ξ1ξ̄0 + ξ0ξ̄1

r
, β = i

ξ0ξ̄1 − ξ1ξ̄0
r

, γ =
ξ1ξ̄1 − ξ0ξ̄0

r
. (3)

Note that these are the equations (1), p. 37, multiplied by r (in
those formulas the denominator is r 2 and here it is r). It follows that
α2 + β2 + γ2 = r 2, so indeed κ : S3

r → S2
r . For r = 1, we clearly have

κ(q) = |q⟩ for any q ∈ S3.
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A quaternion model of a q-bit The ket map κ

If ξ0 = a + b i, ξ1 = c + d i, q = ξ0 + ξ1 j = a + b i + c j + d k, from
Eq. (3) we get:

κ(q) =
(
2(ac + bd), 2(ad − bc), c2 + d2 − (a2 + b2)

)
/r . (4)

Examples

(1) κ(e iφq) = κ(q), for any φ ∈ R. Thus κ(q′) = κ(q) if q′ ≡ q.

(2) κ(1) = κ(i) = −uz (the south pole of S2) and κ(j) = κ(k) = uz
(the north pole of S2). Note that i ≡ 1 and k = ij ≡ j, so it is
enough to check that κ(1) = −uz and κ(j) = uz .

(3) If κ(q) = uz then q ∼ j.

Notation. The vectors j = j1 and 1 = j0 represent the parallel
anti-parallel states of the q-bit. As we will see, this notations are
handy to represent the state vectors of q-bit registers. For the q-bit,
the equation q = ξ0 j

0 + ξ1 j
1 expresses the fact that any state is a

superposition of the states uz = κ(j1) and −uz = κ(j0).
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A quaternion model of a q-bit The ket map κ

Theorem

The map κ : S3
r → S2

r is surjective and for q, q′ ∈ S3
r we have

κ(q′) = κ(q) if and only if q′ ≡ q.

Proof. For u = uφ,θ ∈ S2, let

ǔ = sin θ
2
+ e iφ cos θ

2
j ∈ S3. (5)

Then r ǔ ∈ S3
r and κ(r ǔ) = ru. This proves surjectivity. For the

second claim, see the first proof of Theorem 3 in [1].
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A quaternion model of a q-bit The ket map κ

Theorem

If u = αux + βuy + γuz ∈ S2 − {uz}. Then
ǔ = 1√

2(1−γ)
(1− γ + α j + βk).

Proof. See Theorem 4 in [1].
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A quaternion model of a q-bit Probabilities

Now let us answer the question about probabilities. Let u ∈ S2 be a
state. This defines the quantoscope Au = {(−1, (−u)̌ ), (1, ǔ)}.
What is the probability of obtaining 1 if before measurement with Au

the state is v ∈ S2? The answer is given by the following result,
which is in agreement with the experimental statistics.

Theorem
The probability of observing 1 with Au, if the state before
measurement is v ∈ S2, is pu(v) = cos2(α/2), where α is the
euclidean angle between u and v (that is, cos(α) = u · v).

Proof. According to the way measurement with Au works,
pu(v) = |⟨ǔ|v̌⟩|2, with ⟨ǔ|v̌⟩ = cx(v̌ ¯̌u). The result is obtained on
inserting the expressions for ǔ and v̌ in spherical coordinates and
then going through a little trigonometric joggling. See Theorem 5 in
[1] for details.
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A quaternion model of a q-bit A corollary

The proof of the preceding theorem shows that |⟨ǔ|v̌⟩|2 = cos2(α/2).
Therefore cos(α/2) = |⟨ǔ|v̌⟩| = cos(β), where β = β(ǔ, v̌), and
hence β = α/2.

Example. If u = uφ,θ ∈ S2, then α(u,−u) = π. It follows that
β(ǔ, (−u)̌ ) = π/2, which means that ǔ and (−u)̌ must be
orthogonal.

This can be checked directly by using the trigonometric expressions
ǔ = s + ce iφ j and (−u)̌ = ǔφ+π,π−θ = c − se iφ, where s = sin θ

2
and

c = cos θ
2
.
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A quaternion model of a q-bit The operator Du

Let u ∈ S3(H) and define Du as the observable associated to the
quantoscope {(1, u), (−1, u⊥)}: Du = Pu − Pu⊥ . It is self-adjoint and
unitary, and it does not change if u or u⊥ is multiplied by a phase
factor (as Pu = P⟨u⟩, by definition). Since D2

u = I , and hence
(iDu)

2 = −I , we have

e iαDu = cos(α)I + sin(α)iDu. (6)

Theorem

The vectors u and u⊥ are eigenvectors of the operator U,α = e iαDu

and the corresponding eigenvalues are e iα and e− iα.

Proof. We have

Uu,α(u) = cos(α)(u) + sin(α)iDu(u) = cosαu+ sinα iu = e iαu,

as Du(u) = u. The reasoning for u⊥ is similar.
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A quaternion model of a q-bit Spinorial form of rotions

Theorem

The rotation of E3 about u ∈ S2 of amplitude 2α is given by
Ru,2α(v) = κ(Uǔ,αv̌).

Proof. See Theorem 9 in [1].

Given U ∈ SU(H), define the rotation RU : E3 → E3 by the relation
RU(v) = κ(Uv̌).

Theorem

The axis of RU is ⟨κ(u)⟩, where u is any unit eigenvector of U , and
its amplitude 2α is determined by the relation 2 cosα = tr(U).

Proof. See Theorem 10 in [1].
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A quaternion model of a q-bit Pauli matrices

(1) If u = uφ,θ = (x , y , z), the matrix of the operator Dǔ with respect
to the basis {1, j} is[

− cos θ e− iφ sin θ
e iφ sin θ cos θ

]
=

[
−z x − iy

x + iy z

]
. (7)

In particular, abridging Dǔx ,Dǔy ,Dǔz to X ,Y ,Z , we have:

X ≃
[

1
1

]
, Y ≃

[
− i

i

]
, Z ≃

[
−1

1

]
.

(2) The matrix of Uǔ,α = e iDǔα with respect to the same basis is[
cosα− i cos θ sinα ie− iφ sin θ sinα

ie iφ sin θ sinα cosα + i cos θ sinα

]
=

[
cosα− iz sinα y + ix

−y + ix cosα + iz sinα

]
(8)
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A quaternion model of a q-bit Pauli matrices

(3) In particular we have

Uǔx ,α = e iαX ≃
[
cosα i sinα
i sinα cosα

]
Uǔy ,α = e iαY ≃

[
cosα sinα

− sinα cosα

]
Uǔz ,α = e iαZ ≃

[
e− iα

e iα

]
.

Proof. See §20 in [1].
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Registers of q-bits
The algebra H(n) of a q-register
Basis of H(n) derived from {1, j}

Split elements and the Segre conditions
The state space Σn = PH(n)

Split and entangled states
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Registers of q-bits Prelude: composite quantum systems

If H1, . . . ,Hn are the hermitian spaces of n quantum systems, the
hermitian space H1 ⊗ · · · ⊗ Hn defines the composition of those
systems.2

The hermitian scalar product of the composite system is determined
by the following rule:

⟨x1 ⊗ · · · ⊗ xn|x ′1 ⊗ · · · ⊗ x ′n⟩ = ⟨x1|x ′1⟩ · · · ⟨xn|x ′n⟩.

2We refer to [2] for a justification of this postulate.
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Registers of q-bits The algebra of a register of q-bits

The hermitian space of n qbits, considered as a single quantum
system, is H(n) = H⊗n, where the n factors H refer to the ordered
array formed by the q-bits.

This description has an important feature that is not present in the
conventional treatment of q-registers: H(n) is a unital associative
C-algebra. Its structure is determined by C-multilinearity and the rule

(q1 ⊗ · · · ⊗ qn)(q
′
1 ⊗ · · · ⊗ q′n) = (q1q

′
1)⊗ · · · ⊗ (qnq

′
n). (9)

The Hermitian scalar product of H(n) is determined by the rule

⟨q1 ⊗ · · · ⊗ qn|q′1 ⊗ · · · ⊗ q′n⟩ = ⟨q1|q′1⟩ · · · ⟨qn|q′n⟩ (10)

and C̄/C-multilinearity. We note that q1 ⊗ · · · ⊗ qn and q′1 ⊗ · · · ⊗ q′n
are orthogonal if and only if qk and q′k , for some k ∈ 1..n, are
orthogonal. Note also that

|q1 ⊗ · · · ⊗ qn|2 = |q1|2 · · · |qn|2. (11)
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Registers of q-bits Basis of H(n)

Let B = {0, 1}. For each ν = (ν1, . . . , νn) ∈ Bn, set

jν = jν1 ⊗ · · · ⊗ jνn ∈ H(n).

Then { jν | ν ∈ Bn} is an orthonormal basis of H(n) and hence a
general element of H(n) has the form

ξ =
∑
ν∈Bn

ξν j
ν , ξν ∈ C.

We have jν jν
′
= ϵ(ν, ν ′)jν+ν′, where ϵ(ν, ν ′) is the parity of the

number of k ∈ 1..n such that νk = ν ′k = 1, that is, the parity of the
number of 1’s in νν ′ (component-wise binary product).

Remark. Classical computations happen in Bn. Quantum
computations happen in H(n), where the binary space Bn appears just
as indices for the basis { jν} of H(n).

Remark. jν corresponds to the popular notation |ν⟩.
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Registers of q-bits Example: The Hadamard q-vectors

The Hadamard q-vector of order n is defined as

h(n) = ρn
∑
ν∈Bn

jν ,

where ρ = 1/
√
2. Since the norm squared of

∑
ν∈Bn jν is |Bn| = 2n,

the factor ρn insures that h(n) is a unit vector.

We also have the expression

h(n) = ρn(j0 + j1)⊗
n)
· · · ⊗ (j0 + j1).

Indeed, to expand this product we have to choose 0 or 1 in each
factor, which makes for 2n choices, and for the choice ν = ν0, . . . , νn
we get jν .
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Registers of q-bits Composite vectors

An element ξ ∈ H(n) is said to be composite (or split) if it is of the
form ξ = q1 ⊗ · · · ⊗ qn, with q1, . . . , qn ∈ H.

The ν component of this element is ξν = ξν1(q1) · · · ξνn(qn), where
we set, for q ∈ H, q = ξ0(q) + ξ1(q)j. Now these ξν are not
independent. Indeed, we can write relations among them as follows.

Partition the ν’s into those that begin with 0 and those that begin
with 1. Then form the 2× 2n−1 matrix whose rows correspong to the
ξν ’s of these two groups. Since the two rows are proportional, all the
2× 2 minors of the matrix vanish. These are the Segre relations and
it happens that they are also sufficient (and in general redundant) to
insure that a vector ξ ∈ H(n) is split. N

For n = 2, we get a single relation: det

[
ξ00 ξ01
ξ10 ξ11

]
= 0. For n = 3 we

have the matrix

(
ξ000 ξ001 ξ010 ξ011
ξ100 ξ101 ξ110 ξ111

)
and 6 relations.
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Registers of q-bits Entanglement

The vectors that are not split are said to be entangled. For n = 2,
the vector ξepr = j00 + j11 is entangled. A random element of H(n),
n ⩾ 2, is entangled, in the (technical) sense that the composite
vectors form a set of measure zero.

By definition, Σn = H(n) − {0}/∼, a space of complex dimension
2n − 1. Let

κ : H(n) − {0} → Σn

be the ket map, which by definition is onto and satisfies κ(ξ) = κ(ξ′)
if and only if ξ ∼ ξ′.
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Registers of q-bits Entanglement

The condition for ξ ∈ H(n) to be a unit vector is that∑
ν∈Bn

|ξν |2 = 1.

This equation represents the unit sphere of the Euclidean space H(n)
R .

Since this Euclidean space has of dimension 2× 2n = 2n+1, that
sphere is denoted by S2n+1−1, and thus

Σn = S2n+1−1/ ≡.
The map κ : S2n+1−1 → Σn is onto and with the property that
κ(ξ) = κ(ξ′) if and only if ξ ≡ ξ′.

For n = 1, 2, 3 the (real) dimension of these spheres is 3, 7, 15 and
hence the real dimension of Σn is 2, 6, 14.
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Registers of q-bits Composite and entangled states

A state κ(ξ) is said to be composite if ξ is a composite vector. This
is well defined, because if ξ is composite and ξ ∼ ξ′, then ξ′ is
composite.

Let Σ′
n ⊂ Σn be the set of composite states. We have an onto map

(S2)n → Σ′
n defined by

(v1, . . . , vn) 7→ κ(v̌1 ⊗ · · · ⊗ v̌n).

This shows that entangled states are specified by 2n real parameters,
or n complex parameters, whereas general states are specified by
2n − 1 complex parameters. This again confirms the assertion that a
random state is entangled.
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q-gates and q-computations
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q-gates and q-computations Prelude: Unitary dynamics

The evolution of the system H in a time interval [0, t] is governed by
a unitary operator Ut , in the sense that if ξ0 ∈ H represents the state
of the system at time t = 0, then Utξ0 represents the state of the
system at time t.

If Ut = e iht , where h is an observable, we say that the evolution is
hamiltonian, and that h is the hamiltonian of the system. Notice that
it is indeed a unitary operator: e iht(e iht)† = e ihte− ih†t = I .

If the evolution of the system is hamiltonian and the hamiltonian h
does not depend on t, then the state vector x = Utx0 satisfies the
Schrödinger equation: ẋ = ihx .

Example. The operator Uu,2α = e iαDǔ introduced in the first Theorem
on p. 50 provides, as a function of α, a hamiltonian evolution in H
with h = Dǔ. In this case Scrödinger’s equation says that q̇ = iDǔq.
This fact is important in relation to the engineering of q-computers,
as it is the basis for implementing rotating operations of q-bit.
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q-gates and q-computations q-computations

A q-computation of order n is a unitary operator U : H(n) → H(n).
With the composition, these operators form the unitary group of H(n)

that here will be denoted by U (n). Since UU† = I , U−1 = U†. We
express this by saying that q-computations are reversible and that the
reverse of a q-computation U is U†.

The matrix of a q-computation U with respect to the orthonormal
basis {jν} is the unitary matrix U = (uν

ν′)ν,ν′∈Bn defined by

U(jν) =
∑
ν′∈Bn

uν
ν′ j

ν′ .

These unitary matrices form a group, U (n), with the multiplication
operation, and the map U (n) → U (n), U 7→ U , is an isomorphism.

If ξ is the row of components of ξ ∈ H(n), and j the column formed
with the jν , then we have (using Einstein’s summation criterion) that

U(ξ) = ξνU(jν) = ξνu
ν
ν′ j

ν′ = ξUj.

This means that the row of components of U(ξ) is ξU .
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q-gates and q-computations Classical reversible computations...

A reversible classical computation on n bits is a bijective map
f : Bn → Bn. To this map we may associate the linear map
Uf = H(n) → H(n) that is uniquely defined by imposing that
Uf (j

ν) = jf (ν). Since ν 7→ f (ν) is a permutation of the ν’s, Uf

permutes the jν , so it is unitary, and hence a q-computation of
order n. We say that Uf is the q-computation defined by f . As we
will se below, some of the fundamental q-computations are defined
by classical reversible computations.
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q-gates and q-computations q-Computations of order 1

The only classical computations on one bit ν are the identity and the
negation. If we denote the negation by not, we can write
not(ν) = 1 + ν. Thus not(0) = 1 and not(1) = 0. The
q-computation defined by not is the operator X defined in
Theorem/(1), p. 51, as X (jν) = j1+ν .

In contrast to the classical computations, the q-computations of
order 1 are given by unitary operators of H. Two additional simple
cases are the operators Y and Z defined in Theorem/(1), p. 51:
Y (jν) = (−1)ν i j1+ν and Z (jν) = (−1)1+ν j1+ν . The significance of
X ,Y ,Z in relation to rotations of E3 has been established in
Theorem/(3), p. 51.
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q-gates and q-computations q-Computations of order 1

Two other important examples of q-computations of order 1 are the
Hadamard gate, h, and the phase gate, uα (α ∈ [0, 2π)).

They are defined as follows: h(jν) = 1√
2
(j0 + (−1)ν j1) and

uα(j
0) = j0 and uα(j

1) = e iα j1.

Their matrices are 1√
2

[
1 1
1 −1

]
and diag(1, e iα), respectively. The

latter is hamiltonian, with h = P j, for P j ≃ diag(0, 1) and hence
e iP jα ≃ diag(1, e iα).
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q-gates and q-computations The cnot gate

The controlled-not gate is the q-computation of order 2 defined as
follows: cnot(jν1 jν2) = jν1 jν1+ν2 . If ν1 = 0, it does nothing, and
when ν1 = 1 it negates the second q-bit. It corresponds to the
classical computation B2 → B2, (ν1, ν2) 7→ (ν1, ν1 + ν2).
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q-gates and q-computations q-programs

If U is a q-computation of order 1, it can be applied to any one of
the q-bits of a q-register. If we let Us denote the operator U when
applied to the s-th q-bit, its action is determined by the following
rule: Us(j

ν) = jν1 ⊗ · · · ⊗ jνs−1 ⊗ U(jνs )⊗ jνs+1 ⊗ · · · ⊗ jνn . More
generally, it can be applied to the q-bits whose indices are
s1 < · · · < sp, in which case it will be denoted Us1,...,sp . For example,

h1,2,...,n(j
00···0) = h(n), the Hadamard q-vector of order n (see the

Example on p. 57). Similarly, cnot can be applied to any two q-bits
in a q-register. If we let r , s be the indices of the two q-bits, cnotr ,s

maps · · · ⊗ jνr ⊗ · · · ⊗ jνs ⊗ · · · 7→ · · · ⊗ jνr ⊗ · · · ⊗ jνr+νs ⊗ · · · .

In general, a q-program is a finite sequence of gates that can be of
the form Us , where U is a phase gate or a Hadamard gate, or of the
form cnotr ,s . The composition of these gates is a q-computation of
order n and the main result of the theory of quantum computation is
that any q-computation of order n can be obtained by a q-program.
For references, see [3].
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q-gates and q-computations Measuring the final state

The result of a q-computation U with input vector ξ is the value
ν ∈ Bn supplied by a measure of the output state ξ′ = Uξ by means
of the quantoscope {(ν, jν)}ν∈Bn . The probability of getting a
particular ν is |⟨ jν |ξ′⟩|2 = |ξ′ν |2, and after measurement the system
state is set to κ(jν).

For many applications it is also important to measure any given
subset of q-bits. This can be explained as follows. Let

J = {j1, . . . , jm} (1 ⩽ j1 < · · · < jm ⩽ n)

be the positions of the q-bits to be measured. For any λ ∈ Bm, let
Fλ ⊂ H(n) be the space generated by the jν such that νjs = λs for
s = 1, . . . ,m. Then {(λ,Fλ)}λ∈Bm is a quantoscope that measures
the bits at the positions J . Assuming that the state vector before
measuring is ξ, it supplies a value λ ∈ Bm with probability
pλ = |PFλ

(ξ)|2 and resets the state to κ(PFλ
(ξ)). It is clear that

PFλ
(ξ) =

∑
νjs=λs

ξν j
ν , hence pλ =

∑
νjs=λs

|ξν |2.
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q-gates and q-computations Measuring the final state

Example. If we want to measure the first q-bit of a q-register or order
3, then m = 1, Bm = B , λ ∈ B , and Fλ = ⟨ jλ00, jλ01, jλ10, jλ11⟩. In
this case PFλ

(ξ) =
∑

ν1=λ ξν j
ν , its square norm is pλ =

∑
ν1=λ |ξν |2,

and after the measurement the state is set to κ(
∑

ν1=λ ξν j
ν).
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Conclusions and outlook
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Conclusions and outlook Summary of summary, v2

Introduction to Hermitian spaces, with highlightings of some important
concepts, like the Hermitian angle.

Hermitian structure of H = G+
3 (the geometric quaternions) and its use

for a geometric algebra account of a q-bit.

The algebras H(n), that supply a transparent formalism for modeling
q-bit registers of arbitrary length, both conceptually and computationally.
Especially apt to encode quantum gates.

Segre relations and entanglement. One step further would be to tackle
in this formalism references such as [4] and some related works of Jordi
Tura (https://jtura.cat/), particularly his memoir [5].

The algebras H(n) may be a suitable resource for research in discreet
mathematics, as for example quantum error-correcting codes.
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Thank you!
sebastia.xambo@upc.edu
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Appendix Spherical coordinates for S2
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Figura 16.1: On the left, we have the rectangle of points (φ, θ) with φ ∈ [0, 2π)
and θ ∈ [0, π]. The parameter φ is the longitude measured eastward from a given
meridian (vertical segment on the left, in cyan), say the Greenwich one. The
parameter θ is the colatitude and is measured along a meridian from the north
pole uz to the south pole −uz . ← N
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Appendix Spinor spherical coordinates
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The geometric algebra Gn
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Gn Preamble

We denote the geometric algebra of the euclidean space En by Gn.

Its elements are called multivectors.

The geometric, wedge, and inner products of two multivectors x , x ′

are denoted by xx ′, x ∧ x ′, and x · x ′, respectively (the wedge product
is also called outer or exterior product). They are bilinear and the
first two, xx ′ and x ∧ x ′, are associative.

We first summarize a few general facts about Gn and at the end we
consider the particularities about G2 and G3 needed later.
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Gn Wedge product

With the wedge product, Gn coincides with the exterior algebra of En,
so that Gn = ⊕n

k=0Gk
n , where Gk

n is spanned, as a real vector space, by
the nonzero outer products of the form v1 ∧ · · · ∧ vk , v1, . . . , vk ∈ En

(such outer products are called k-blades, and the elements of Gk
n ,

k-vectors).

Since, G0
n = R and G1

n = En, the 0-vectors are scalars and the
1-vectors are just vectors. Bivector is a synonym of 2-vector, and
pseudoscalar of n-vector.

The k-blades x = v1 ∧ · · · ∧ vk represent oriented k-volumes of En

(oriented areas when k = 2). Note that the condition v ∧ x = 0 is
equivalent v ∈ ⟨v1, . . . , vk⟩. This shows that the latter space can be
denoted Lx . Then it is clear that Lλx = Lx for any non-zero scalar λ,
and in fact this is the only redundancy, in the sense that two k-blades
represent the same linear space if and only if they are proportional
(x ′ ∼ x is our preferred notation).
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Gn Inner product

It generalizes the euclidean scalar product v · v ′ ∈ R of vectors to a
product x · x ′ ∈ Gn for any x , x ′ ∈ Gn, and the following rules are
sufficient to evaluate all cases:
(1) λ · x = x · λ = 0 for any scalar λ and any multivector x .

By bilinearity we may assume x ∈ Gk
n , x

′ ∈ Gk ′
n , k , k ′ ⩾ 1.

(2) If k > k ′, x · x ′ = (−1)kk
′+k ′x ′ · x . So we may assume k ⩽ k ′.

(3) If k = 1, so x = v ∈ En, and x ′ = v ′
1 ∧ · · · ∧ v ′

k ′ , v
′
1, . . . , v

′
k ′ ∈ En,

x · x ′ =
∑k ′

i=1(−1)i−1(v · v ′
i )v

′
1 ∧ · · · ∧ v ′

i−1 ∧ v ′
i+1 ∧ · · · ∧ v ′

k ′ .
(4) If x = v1∧ · · · ∧ vk , 2 ⩽ k ⩽ k ′, x · x ′ = (v1∧ · · · ∧ vk−1) · (vk · x ′).

SXD (IMTech & BSC) Quantum Models 19/4/2023 80 / 94



Gn Geometric product

The geometric product is determined by the following rule:

If v ∈ En, then vx = v · x + v ∧ x for any multivector x .

In particular we see, given vectors v , v ′ ∈ En, that

v 2 = v · v (for v ∧ v = 0) and that vv ′ = −v ′v ⇔ v · v ′ = 0.

Notice that 2v · v ′ = vv ′ + v ′v and 2v ∧ v ′ = vv ′ − v ′v .

With the geometric product, Gn is isomorphic to the Clifford algebra
of En.
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Gn Parity involution

It is the linear automorphism of Gn, x 7→ x̂ , such that x̂ = (−1)kx for
all x ∈ Gk

n . It is an involution (that is, ˆ̂x = x for all x) called the
parity or grade involution of Gn.

It is an automorphism for the geometric, wedge, and inner products:

x̂x ′ = x̂ x̂ ′, x̂ ∧ x ′ = x̂ ∧ x̂ ′, and x̂ · x ′ = x̂ · x̂ ′.

The set G+
n = {x ∈ Gn | x̂ = x} is the even subalgebra. It elements

are the multivectors that have no odd grades.

The set G−
n = {x ∈ Gn | x̂ = −x} is a vector subspace of Gn and its

elements are the multivectors that have no even grades.

Clearly, Gn = Gnψ ⊕ G−
n .
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Gn Reverse involution

It is the linear automorphism of Gn, x 7→ x̃ , such that x̃ = (−1)k//2x
for x ∈ Gk

n , where k//2 = ⌊k/2⌋.

It is an involution (that is, ˜̃x = x for all x). It is called the reverse
involution because

(v1 ∧ · · · ∧ vk)
∼ = (−1)k//2v1 ∧ · · · ∧ vk

= (−1)(
k
2)v1 ∧ · · · ∧ vk = vk ∧ · · · ∧ v1

(we have used that k//2 has the same parity as
(
k
2

)
).

It is an antiisomorphism of Gn in the sense that

x̃x ′ = x̃ ′x̃ , x̃ ∧ x ′ = x̃ ′ ∧ x̃ , and x̃ · x ′ = x̃ ′ · x̃ .

The composition of the parity and reverse involutions is the Clifford
involution, x 7→ x̄ . It is an anti-automorphism of Gn (for the three
products), and x̄ = (−1)(k+1)//2x for x ∈ Gk

n .
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Gn Bases

If e = e1, . . . , en is a basis of En, then the k-vectors

eJ = ej1 ∧ · · · ∧ ejk , 1 ⩽ j1 < · · · < jk ⩽ n

form a basis of Gk
n . Thus any k-vector is a linear combination of the

form
∑

|J|=k λJeJ , λJ ∈ R. It follows that dimGk
n =

(
n
k

)
and

dimGn = 2n. If the basis e is orthogonal, then eJ = ej1 · · · ejk .

In particular we have dimGn
n = 1 and e1..n = e1 ∧ · · · ∧ en is a basis.

If e is orthonormal, then e21..n = (−1)k//2e1..nẽ1..n = (−1)k//2. This
implies that if e ′ is another orthonormal basis, then e ′1..n = ±e1..n,
where the sign indicates whether the two basis have the same (+) or
opposite (−) orientations. If En is oriented, then its pseudoscalar is
e1..n, where e1, . . . , en is any orthonormal positive basis.
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Gn G2, Wessel’s algebra

Let E2 be the oriented euclidean plane, and i its pseudoscalar (a
positively oriented unit area). As i 2 = (−1)2//2 = −1, G+

2 = R⊕ Ri
is isomophic to the complex field, and we set C = G+

2 (geometric
complex numbers). The reverse involution x̃ coincides with the
Clifford involution x̄ , and they define the conjugation automorphism
of C: If x = a + bi , then x̃ = x̄ = a − bi . The rotation of E2 of
amplitude α, Rα, is given by Rα(v) = ve iα = e−iαv . These relations
are a direct consequence of the fact that if e1, e2 is a positive
orthonormal basis, then e1i = e2 and e2i = −e1, while ie1 = −e2 and
ie2 = e1 (i anticommutes with vectors).
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Gn G3, Pauli’s algebra

Let E3 be the oriented euclidean space, and i its pseudoscalar (a
positively oriented unit volume). We have i2 = (−1)3//2 = −1, and in
this case i commutes with vectors. The algebra of geometric
quaternions is H = G+

3 . Its elements have form q = a + v i (a ∈ R
and v ∈ E3). From qq̄ = (α + v i)(α− v i) = α2 + v 2 we see that H
is a (skew) field: the inverse of q ̸= 0 is q̄/(qq̄) = q̄/|q|2.

For a unit quaternion q ̸= ±1 there exists α ∈ (0, π) and a unit
vector u ∈ S2(E3) such that q = cosα + iu sinα, and α and u are
uniquely deteremined by q. Indeed, the condition that q = a + iv is a
unit quaternion is a2 + |v |2 = 1. Since |v | ⩾ 0, there is a unique
α ∈ [0, π] such that a = cosα and |v | = sinα. Assuming that
q ̸= ±1, we have α ∈ (0, π) and hence v = (v/|v |)|v | = u sinα,
where u = v/|v | ∈ S2(E3). Thus we can write q = cosα + iu sinα.
Since (iu)2 = −1, we finally have q = e iuα, the polar form of q. The
polar form of general quaternions q that are not real is q = re iuα,
where r ∈ R+, α ∈ (0, π), and u ∈ S3(E3).
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Gn G3, Pauli’s algebra

The field H is isomorphic to the field H of Hamilton’s algebraic
quaternions in many ways. For instance, if ux , uy , uz is a positive
basis of the oriented euclidean space E3, then i = uxuyuz is its
pseudoscalar and the unit areas i = uz i = uxuy , j = uyuz , k = uxuz
satisfy Hamilton’s relations: i2 = j2 = k2 = ijk = −1.
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Notes
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Notes P.19

The fact that |x⟩ and [x ] obey the same proportionality rule is not a
coincidence, for although Dirac never mentioned projective geometry
explicitly in his research papers and books, later in his life he
acknowledged having used it in his reasonings all along. This is a
fascinating story, a bit mysterious, for which we can only refer to the
literature, for instance the biography [6] and the references there,
particularly [7].

A general projective geometric approach to quantum systems is
possible and provides deep insights for quantum theory and its
surprisingly close relation to classical mechanics, [8]. P
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Notes P.29

“The classical theory predicts that the atomic magnets assume all possible
directions with respect to the direction of the magnetic field. On the other
hand, the quantum theory predicts that we shall find only two directions
parallel and antiparallel to the field (new theory, the old one gave also the
direction perpendicular to the field)” (from Stern’s Nobel lecture).

P
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Notes P.58

The number of Segre 2× 2 determinants is 22n−3 − 2n−2. The minimum
number of sufficient conditions turns out to be 2n − n − 1 and for n ⩾ 2,
22n−3 − 2n−2 ⩾ 2n − n− 1, with equality (= 1) only for n = 2. For n = 3,
the values are 6 and 4 (so 2 redundant equations); for n = 4, 28 and 11,
so 17 redundant equations; and for large n, the number of redundant
equations is asymptotically equal to the number of equations. For n = 10,
for example, the two numbers are 130816 and 1013, which means 129803
redundancies.

P
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