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Registers of q-bits
Composite systems

The algebra H(n) of a q-register
Basis of H(n) derived from {1, j} (or {|0⟩, |1⟩})

Split elements and the Segre conditions
The state space Σ(n) = PH(n)

Split and entangled states
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Registers of q-bits Composite quantum systems

If H1, . . . ,Hn are the hermitian spaces of n quantum systems, the
hermitian space H1 ⊗ · · · ⊗ Hn defines the composition of those
systems.1

The hermitian scalar product of the composite system is determined
by the following rule:

⟨x1 ⊗ · · · ⊗ xn|x ′1 ⊗ · · · ⊗ x ′n⟩ = ⟨x1|x ′1⟩ · · · ⟨xn|x ′n⟩.

1We refer to [1] for a justification of this postulate.
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Registers of q-bits The algebra of a register of q-bits

The hermitian space of n qbits, considered as a single quantum
system, is H(n) = H⊗n, where the n factors H refer to the ordered
array formed by the q-bits.

This description has an important feature that is not present in the
conventional treatment of q-registers: H(n) is a unital associative
C-algebra. Its structure is determined by C-multilinearity and the rule

(q1 ⊗ · · · ⊗ qn) · (q′1 ⊗ · · · ⊗ q′n) = (q1q
′
1)⊗ · · · ⊗ (qnq

′
n). (1)

The Hermitian scalar product of H(n) is determined by the rule

⟨q1 ⊗ · · · ⊗ qn|q′1 ⊗ · · · ⊗ q′n⟩ = ⟨q1|q′1⟩ · · · ⟨qn|q′n⟩ (2)

and C̄/C-multilinearity. We note that q1 ⊗ · · · ⊗ qn and q′1 ⊗ · · · ⊗ q′n
are orthogonal if and only if qk and q′k , for some k ∈ 1..n, are
orthogonal. Note also that

|q1 ⊗ · · · ⊗ qn|2 = |q1|2 · · · |qn|2. (3)
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Registers of q-bits Basis of H(n)

Let B = {0, 1}. For each ν = (ν1, . . . , νn) ∈ Bn, set

jν = jν1 ⊗ · · · ⊗ jνn ∈ H(n).

Then { jν | ν ∈ Bn} is an orthonormal basis of H(n) and hence a
general element of H(n) has the form

ξ =
∑

ν∈Bn

ξν j
ν , ξν ∈ C.

We have jν · jν′ = ϵ(ν, ν ′)jν+ν
′
, where ϵ(ν, ν ′) is the parity of the

number of k ∈ 1..n such that νk = ν ′k = 1, that is, the parity of the
number of 1’s in ν · ν ′ (component-wise binary product).

Remark. Classical computations happen in Bn. Quantum
computations happen in H(n), where the binary space Bn appears just
as indices for the basis { jν} of H(n).

Remark. In Dirac notation jν can be denoted by |ν⟩. In this notation,
|ν⟩ · |ν ′⟩ = ±|ν + ν ′⟩.
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Registers of q-bits Example: The Hadamard q-vectors

The Hadamard q-vector of order n is defined as

h(n) = ρn
∑

ν∈Bn

jν ,

where ρ = 1/
√
2. Since the norm squared of

∑
ν∈Bn j

ν is |Bn| = 2n,

the factor ρn insures that h(n) is a unit vector.

We also have the expression

h(n) = ρn(j0 + j1)⊗ n)· · · ⊗ (j0 + j1).

Indeed, to expand this product we have to choose 0 or 1 in each
factor, which makes for 2n choices, and for the choice ν = ν0, . . . , νn
we get jν .

In Dirac notation:

h(n) = ρn
∑

ν∈Bn |ν⟩ = ρn(|0⟩+ |1⟩)⊗ n)· · · ⊗ (|0⟩+ |1⟩).
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Registers of q-bits Split vectors

An element ξ ∈ H(n) is said to be split (or composite) if it is of the
form ξ = q1 ⊗ · · · ⊗ qn, with q1, . . . , qn ∈ H.

The ν component of this element is ξν = ξν1(q1) · · · ξνn(qn), where
we set, for q ∈ H, q = ξ0(q) + ξ1(q)j. Now these ξν are not
independent. Indeed, we can write relations among them as follows.

Partition the ν’s into those that begin with 0 and those that begin
with 1. Then form the 2× 2n−1 matrix whose rows correspond to the
ξν ’s of these two groups. Since the two rows are proportional, all the
2× 2 minors of the matrix vanish. These are the Segre relations and
it happens that they are also sufficient (and in general redundant) to
insure that a vector ξ ∈ H(n) is split. N

For n = 2, we get a single relation: det

[
ξ00 ξ01
ξ10 ξ11

]
= 0. For n = 3 we

have the matrix

(
ξ000 ξ001 ξ010 ξ011
ξ100 ξ101 ξ110 ξ111

)
and 6 relations.
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Registers of q-bits Entanglement

The vectors that are not split are said to be entangled. For n = 2,
the vector ξepr = j00 + j11 = |00⟩+ |11⟩ is entangled. A random
element of H(n), n ⩾ 2, is entangled, in the (technical) sense that the
split vectors form a set of measure zero.

By definition, Σ(n) = H(n) − {0}/∼, a space of complex dimension
2n − 1. Let

κ : H(n) − {0} → Σ(n)

be the ket map, which by definition is onto and satisfies κ(ξ) = κ(ξ′)
if and only if ξ ∼ ξ′.
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Registers of q-bits Entanglement

The condition for ξ ∈ H(n) to be a unit vector is that∑

ν∈Bn

|ξν |2 = 1.

This equation represents the unit sphere of the Euclidean space H(n)
R .

Since this Euclidean space has of dimension 2× 2n = 2n+1, that
sphere is denoted by S2n+1−1, and thus

Σ(n) = S2n+1−1/ ≡.
The map κ : S2n+1−1 → Σ(n) is onto and with the property that
κ(ξ) = κ(ξ′) if and only if ξ ≡ ξ′.

For n = 1, 2, 3 the (real) dimension of these spheres is 3, 7, 15 and
hence the real dimension of Σ(n) is 2, 6, 14.
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Registers of q-bits Split and entangled states

A state κ(ξ) is said to be split (or composite) if ξ is a split vector.
This is well defined, because if ξ is split and ξ ∼ ξ′, then ξ′ is split.

Let Σ̄(n) ⊂ Σ(n) be the set of split states. We have an onto map
(S2)n → Σ′

n defined by

(v1, . . . , vn) 7→ κ(v̌1 ⊗ · · · ⊗ v̌n).

This shows that entangled states are specified by 2n real parameters,
or n complex parameters, whereas general states are specified by
2n − 1 complex parameters. This again confirms the assertion that a
random state is entangled.
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q-Computing
Unitary dinamics q-computations

Richard Feynman and Yuri Manin
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q-Computing Unitary dynamics

The evolution of the system H in a time interval [0, t] is governed by
a unitary operator Ut , in the sense that if ξ0 ∈ H represents the state
of the system at time t = 0, then Utξ0 represents the state of the
system at time t.

Note that ⟨Utξ0|Utξ
′
0⟩ = ⟨ξ0|ξ′0⟩, in particular |Utξ0| = |ξ0|.

Remark. Let U be a unitary operator, A an observable and ξ ∈ H a
unit vector. Let a1, . . . , ar be the eigenvalues of A, E1, . . . ,Er the
corresponding eigenspaces, and ξ = ξ′1 + · · ·+ ξ′r with ξ

′
k ∈ Ek . Then

(1) A′ = UAU† is an observable; (2) its eiganvalues are a1, . . . , ar and
its eigenspaces UE1, . . . ,UEr ; and (3) Uξ = Uξ′1 + · · ·+ Uξ′r , with
Uξ′k ∈ UEk and |Uξ′k |2 = |ξ′k |2.

SXD (IMTech & BSC) Quantum Algorithms 29/6/2023 13 / 122



q-Computing Unitary dynamics

If Ut = e iht , where h is an observable, we say that the evolution is
hamiltonian, and that h is the hamiltonian of the system. Notice that
it is indeed a unitary operator: e iht(e iht)† = e ihte− ih†t = I .

If the evolution of the system is hamiltonian and the hamiltonian h
does not depend on t, then the state vector x = Utx0 satisfies the
Schrödinger equation: ẋ = ihx .

Thus dx = ih dt x . If we fix dt = t/N (N large), the loop

x = x0

do N: x = (1 + i h dt)x

return x

computes an approximation of x = Ut(x0).
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q-Computing q-computations

A q-computation of order n is a unitary operator U : H(n) → H(n).
With the composition, these operators form the unitary group of H(n)

that here will be denoted by U (n).

Identity: Id ∈ U (n).

Composition: If U ,V ∈ U (n). then UV ∈ U (n).

Reversibility: If U ∈ U (n), then U−1 = U† ∈ U (n).

Examples. (1) If U ∈ U (n) and U ′ ∈ U (n′), then U ⊗ U ′ ∈ U (n+n′).

(2) If U1, . . . ,Un ∈ U (1), then U1 ⊗ · · · ⊗ Un ∈ U (n).

(3) If U ∈ U (1), then U⊗n ∈ U (n).

(4) A reversible classical computation on n bits is a bijective map
f : Bn → Bn. Associate to f the linear map Uf = H(n) → H(n)

uniquely defined by Uf (j
ν) = jf (ν), or Uf (|ν⟩) = |f (ν)⟩. Since

ν 7→ f (ν) is a permutation of the ν’s, Uf permutes the jν = |ν⟩, so it
is unitary, and hence a q-computation of order n.
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q-Computing q-computations

The matrix of a q-computation U with respect to the orthonormal
basis { jν = |ν⟩} is the unitary matrix U = (uνν′)ν,ν′∈Bn defined by

U(jν) =
∑

ν′∈Bn

uνν′ j
ν′ , or U(|ν⟩) =

∑

ν′∈Bn

uνν′|ν ′⟩.

These unitary matrices form a group, U (n), with the multiplication
operation, and the map U (n) → U (n), U 7→ U , is an isomorphism.

If ξ is the row of components of ξ ∈ H(n), and j the column formed
with the jν , then we have (using Einstein’s summation criterion) that

U(ξ) = ξνU(jν) = ξνu
ν
ν′ j

ν′ = ξUj.

This means that the row of components of U(ξ) is ξU .
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q-Computing Graphical representation

A q-computation U of order n is often represented by a diagram like
this:

n U{ ...

The n horizontal lines are called q-wires. Each wire carries a q-bit
state.

If we want to represent the q-input ξ and q-output ξ′, the diagram
can be modified as follows:

ξ ξ′
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q-Computing Graphical representation

In the case where ξ = |ν1⟩ · · · |νn⟩, the input is represented as follows:

ν

ν

ν

ν

1

2

n

n−1
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q-Computing q-Computations of order 1

The only classical computations on one bit ν are the identity and the
negation. If we denote the negation by Not, we can write
Not(ν) = 1 + ν. Thus Not(0) = 1 and Not(1) = 0. The
q-computation defined by Not is the operator X defined by
X (jν) = j1+ν or X (|ν⟩) = |1 + ν⟩ (QModels, p.51, (1)).

In contrast to the classical computations, the q-computations of
order 1 are given by unitary operators of H. In matrix form, these
operators have the form

U = e iα

[
z w

−w̄ z̄

]
,

where α ∈ [0, 2π), z ,w ∈ C, and zz̄ + ww̄ = 1.

U
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q-Computing q-Computations of order 1

In addtion to X , we have the operators Y and Z defined in loc. cit.
The significance of X ,Y ,Z in relation to rotations of E3 is that
(QModels, p.52, (3)):

Uǔx ,α = e iαX ≃
[
cosα i sinα
i sinα cosα

]

Uǔy ,α = e iαY ≃
[

cosα sinα
− sinα cosα

]

Uǔz ,α = e iαZ ≃
[
e− iα

e iα

]
.

These q-computations induce the rotations of S2 about ux , uy , uz of
amplitude 2α. They are hamiltonian (with respect to α) with
hamiltonians X ,Y ,Z .

X Y Z
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q-Computing q-Computations of order 1: Hadamard

The Hadamard gate is defined as follows:

Had(jν) = 1√
2
(j0 + (−1)ν j1) or

Had(|0⟩) = 1√
2
(|0⟩+ |1⟩), Had(|1⟩) = 1√

2
(|0⟩ − |1⟩).

Its matrix is 1√
2

[
1 1
1 −1

]
.

H
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q-Computing q-Computations of order 1: Sα

The phase shift gate Sα (α ∈ [0, 2π)) is defined as follows:

Sα(j
0) = j0 and Sα(j

1) = e iα j1, or
Sα(|0⟩) = |0⟩ and Sα(|1⟩) = e iα|1⟩.
Its matrix is diag(1, e iα).

Sα can be expressed as e iP jα, P j ≈ diag(0, 1). Indeed,

e
iα
[
0 0
0 1

]
= e

[
0 0
0 iα

]
=

[
1

e iα

]
. So Sα is hamiltonian in α.

Special cases: S = Sπ/2 ≈
[
1

i

]
and T = Sπ/4 ≈

[
1

e iπ/4

]
.

Sα

S T
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q-Computing q-computations of order 2: The CNOT gate

The controlled-Not gate is the q-computation of order 2, Cnot,
defined as follows:

Cnot(jν1 jν2) = jν1 jν1+ν2 , or

Cnot(|ν1ν2⟩) = |ν1(ν1 + ν2)⟩.
If ν1 = 0, it does nothing, and when ν1 = 1 it negates the second
q-bit. It corresponds to the classical computation B2 → B2,
(ν1, ν2) 7→ (ν1, ν1 + ν2).

ν ν ν

ν ν

ν

ν
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q-Computing Basic q-procedures on H(n)

1. U-gates, U ∈ U (1)

For k ∈ 1..n, let Uk denote the action of U on the k-th q-bit. More
precisely, it is the q-computation defined as follows:

| · · · νk · · · ⟩ = | · · · ⟩ |νk⟩ | · · · ⟩ 7→ | · · · ⟩ U |νk⟩ | · · · ⟩.

For n = 2, for instance, U2 = Id⊗ U and if n = 3, U2 = Id⊗ U ⊗ Id.

An U-gate will be called restricted if U is chosen from {H , S ,T},
where H = Had S = Sπ/2, T = Sπ/4.

H S T

The definition of UK when K is a list of integers in 1..n is
straightforwar: Repeat Uk for each k ∈ K .
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q-Computing Basic q-procedures on H(n)

2. Cnot-gates, Cr ,s

Given r , s ∈ 1..n, Cr ,s is the q-computation that negates the s-th
q-bit if (an only if) the r -th q-bit is |1⟩. In other words, it is the
linear map which is the identity on the basis q-vectors of the form
| · · · 0r · · · ⟩ and such that

| · · · 1r · · · 0s · · · ⟩ 7→ | · · · 1r · · · 1s · · · ⟩
| · · · 1r · · · 1s · · · ⟩ 7→ | · · · 1r · · · 0s · · · ⟩

ν

ν ν

ν ν

ν

ν

ν ν

ν

C12 C21
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q-Computing Basic q-procedures on H(n)

Example

The q-computation C12(U) is quite different from I2 ⊗ U . In fact, the
matrix of the latter is 



u00 u01 0 0
u10 u11 0 0
0 0 u00 u01
0 0 u10 u11




Notice, for example, that

(I2 ⊗ U)|00⟩ = |0⟩U |0⟩ = u00|0⟩|0⟩+ u10|0⟩|1⟩,
whereas C12(U)|00⟩ = |00⟩.

SXD (IMTech & BSC) Quantum Algorithms 29/6/2023 26 / 122



q-Computing q-Measurements

3. Measurement ML(ξ)

To produce a mathematical model of a quantum computation we
need to include the operation of measuring a set
L = {l1, . . . , lr} ⊆ {1, . . . , n} of q-bits.

Let ξ ∈ H(n) be a unit q-vector representing the current state of a
q-register of length n (the q-memory).

Consider the observable AL uniquely defined by AL(|ν⟩) = νL|ν⟩,
where νL = νl1 · · · νlr (viewed as an r -bit integer). Its eigenvalues are
the r -bit integers M , and the M-eigenspace is the space EM ⊆ H(n)

spanned by all |ν⟩ such that νL = M .

The orthogonal projection of ξ on EM is ξML =
∑

νL=M ξν |ν⟩
(L-collapses of ξ) and the probability of getting M is pM = |ξML |2.

ξ ξ
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q-Computing q-Measurements

In the case when L = {1, . . . , n}, we write simply M(ξ). In that case
the possible outcomes are the elements ν ∈ Bn and the
corresponding collapses are ξν1..n = ξν |ν⟩, with probabilities |ξν |2. In
this context, the coefficient ξν is usually called the (probability)
amplitude of |ν⟩, and the probability of this result is pν = |ξν |2: the
probability is the norm squared of the amplitude.

If n = 3, for instance, then there are eight possible outcomes for
M(ξ) = M123(ξ) and the corresponding collapses are ξrst123 = ξrst |rst⟩
(rst ∈ B3) with probabilities prst = |ξrst |2.
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q-Computing q-procedures

A q-procedure is a sequence of actions, each of which is either a
q-computation or a q-measurement, that are applied successively to
|0 · · · 0⟩ (this is the default initial state of the q-memory). Since
procedures are meant to produce results, usually the last action is a
(full) q-measurement.

Example: random number generator

The following q-procedure outputs random numbers of n bits with a
uniform probability distribution:

Random

ξ = H⊗n|0 . . . 0⟩ = H |0⟩ · · ·H |0⟩, M(ξ)

Indeed, we have seen that ξ is the Hadamard q-vector
h(n) = ρ

∑
ν |ν⟩ (ρ = 1/2n/2); the amplitude of any ν is ρ; so its

probability is pν = ρ2 = 1/2n.
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q-Computing q-algorithms

A q-algorithm is a q-procedure made up of only basic q-procedures.

The complexity of a q-algorithm is the number of basic q-procedures
that compose it.

A q-algorithm is said to be

internal if it does not contain q-measurements;

exact if the probability of its output is 1,
and probabilistic otherwise.

restricted if the only U-gates used belong to {H , S ,T}.
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q-Computing Universality of the U and Cnot gates

Theorem (Universality of the U and Cnot gates)

1) Any q-computation can be realized by an internal q-algorithm.

2) For any q-computation U there exists a restricted internal
q-algorithm which approximates U to any wanted degree.

Proof See Universality (1) and Universality (2) .

In the remainder of this section, we provide elementary illustrations of
this theorem: Swap[r , s], Had[L], Euler[r , s,U] (for Cr ,s(U)), and
the Toffoli and Fredkin gates.
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q-Computing Swap[r , s]

Example (Swap[r , s]) This internal q-algorithm is defined as follows:

Swap[r , s]

Cr ,s ,Cs,r ,Cr ,s

νr νr

νr νrνs

νs

νs

νs

The q-computation performed by this algorithm amounts to
interchanging the states of the r -th and s-th q-bits, which means
that it is equal to the linear map uniquely defined by

| · · · νr · · · νs · · · ⟩ 7→ | · · · νs · · · νr · · · ⟩
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q-Computing Swap[r , s]

This statement is a direct consequence of the fact that it holds for
classical computations. Indeed, for any pair of bits, (x , y), we have:

C1,2(x , y) = (x , x + y),

C2,1(x , x + y) = (x + x + y , x + y) = (y , x + y),

C1,2(y , x + y) = (y , y + x + y) = (y , x).
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q-Computing Multiple Had

Example (Multiple H) Consists in applying the Hadamard gate H at
any index on a given list L ⊆ {1, . . . , n} of positions (denoted by HL

before):

Had[L]

for l ∈ L do Rl(H)

Remark that if m ∈ {1, . . . , n}, Had[{1, . . . ,m}] yields a
q-algorithm for the q-procedure |ν⟩ 7→ (H⊗m|ν1 · · · νm⟩)|jm+1 · · · jn⟩.
This algorithm will be denoted Had[m]. In the case m = n, it is a
q-algorithm for H⊗n and instead of Had[n] we will simple write Had.

Similar algorithms can be devised replacing H by any U ∈ U (1). For
example, U⊗n can be computed by the following q-algorithm:

for l ∈ {1, . . . , n} do Rl(U)
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q-Computing The Euler ABC decomposition

We know that

Rz(φ) = cos φ
2
I2 − i sin φ

2
Z = e−i φ

2
Z

Ry (θ) = cos θ
2
I2 − i sin θ

2
Y = e−i θ

2
Y

Rx(ψ) = cos ψ
2
I2 − i sin ψ

2
X = e−i ψ

2
X

Given U ∈ U (1), it can be expressed as

U = e iαAXBXC ,

with A,B ,C ∈ SU (1) and ABC = I2 (this will be called an Euler
decomposition of U). Indeed, there are (Euler) angles α, β, θ, γ such
that U = e iαRz(β)Ry (θ)Rz(γ), and it is enough to set

A = Rz(β)Ry (
θ
2
)

B = Ry (− θ
2
)Rz(−β+γ

2
)

C = Rz(
γ−β
2
)

The proof is a staightforward computation.
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q-Computing The Euler ABC decomposition

Algorithm for Cr ,s(U)

Euler[r , s,U]

Rs(C ),Cr ,s ,Rs(B),Cr ,s ,Rs(A),Rr (Sα)

Proof. We may assume r = 1 and s = 2, as the argument can be
easily adapted to the general case. Note that if ν1 = 0, then the C1,2

and R1(Sα) act as the identity and hence, since ABC = I2,
Euler[1, 2,U] also acts as the identity. If ν1 = 1, then the action on
|ν2⟩ is AXBXC (|ν2⟩) and on |ν1⟩ = |1⟩ by the phase factor e iα:

|1⟩|ν2⟩ 7→ e iα|1⟩AXBXC |ν2⟩ = |1⟩U |ν2⟩.

≡
⊕ ⊕U C B A

Sα
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q-Computing The Toffoli gate

The Toffoli gate is the q-computation of order 3 corresponding to the
classical Nand gate ν1ν2ν3 7→ (ν1 · ν2) + ν3. It negates the bit ν3
precisely when ν1 = ν2 = 1, so it is a doubly controlled negation.

ν

ν

ν

ν

ν ν ν

ν

It interchanges |110⟩ and |111⟩, leaving all other basis vectors fixed.
It follows that its matrix is



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0




SXD (IMTech & BSC) Quantum Algorithms 29/6/2023 37 / 122



q-Computing The Toffoli gate

⊕ H ⊕ T † ⊕ T ⊕ T † ⊕ T H

S⊕T †≡ T † ⊕

T

Toffoli

R3(H), C2,3, R3(T
†), C1,3, R3(T ), C2,3, R3(T

†), C1,3, R3(T ),
R3(H), R2(T

†), C1,2, R2(T
†), C1,2, R2(S), R1(T )
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q-Computing Fredkin gate

The Fredkin gate is the q-computation of order 3 corresponding to
the classical computation 0ν2ν3 7→ 0ν2ν3 and 1ν2ν3 7→ 1ν3ν2. In
other words, it is a controlled-swap. It interchanges |110⟩ and |101⟩
and leaves all other basis vectors fixed. Hence its matrix is



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1




ν

ν

ν

ν

ν

ν
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q-Computing Multicontroled U-gates

In this example we indicate how to obtain a q-algorithm for the
q-procedure C{1,...,n},n+1(U) defined by the relations

|ν⟩|νn+1⟩ 7→
{
|1n⟩|1 + νn+1⟩ if j = 1n

|ν⟩|νn+1⟩ otherwise

If we take V ∈ U (1) such that U = V 2, then the algorithm is based
on the following recursive recipe:

Control[{1, . . . , n}, n + 1,U]

Control[{2, . . . , n}, n + 1,V ]

Control[{1, . . . , n − 1}, n,X ]

Control[{2, . . . , n}, n + 1,V †]

Control[{1, . . . , n − 1}, n,X ]

Control[{1, . . . , n − 1}, n + 1,V ]
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q-Computing Multicontroled U-gates

In other words, an n-controlled U-gate is reduced to five
(n − 1)-controlled U-gates. This is more easily grasped pictorially.
Consider, for instance, the case n = 3:

U

⊕ ⊕

V V † V

≡

If the first q-bit is |0⟩, then the action on the fourth q-bit is
VV † = I2. If the second q-bit is |0⟩, then the action on the fourth
q-bit is I2. If the third q-bit is |0⟩, and the first and second are |1⟩,
then the action on the fourth q-bit is V †V = I2. Finally, if the three
q-bits are |1⟩, then the action on the fourth q-bit is V 2 = U .
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q-Computing Action of U ∈ U(1) on the plane [|ν⟩, |ν′⟩]

Consider the plane P = [|ν⟩, |ν ′⟩] spanned by two different basis
vectors |ν⟩ and |ν ′⟩. Then we can let U = [[a, b], [c , d ]] ∈ SU (1) act
on that plane in the obvious way: U |ν⟩ = a|ν⟩+ b|ν ′⟩ and
U |ν ′⟩ = c |ν⟩+ d |ν ′⟩. Moreover, we can extend this action to H(n) so
that U |ν ′′⟩ = |ν ′′⟩ for all ν ′′ ̸= ν, ν ′. Since |ν ′′⟩ is orthogonal to P ,
this action is a q-computation (we will write Uν,ν′ to denote it).
Note, for example, that if ν = 1 and ν ′ = 2, then the matrix of our
q-computation is U ⊕ I2n−2.

Let us indicate how to get a q-algorithm for Uν,ν′ . In fact, by the
previous example, it will be enough to show how to resolve Uν,ν′ by
means of simple and multicontrol U-gates.
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q-Computing Action of U ∈ U(1) on the plane [|ν⟩, |ν′⟩]

The simplest case is when |ν⟩ and |ν ′⟩ have the form

|ν⟩ = |x⟩|0⟩|y⟩, |ν ′⟩ = |x⟩|1⟩|y⟩.
Indeed, in this case
U |ν⟩ = a|ν⟩+ b|ν ′⟩ = |x⟩(a|0⟩+ b|1⟩)|y⟩ = |x⟩(U |0⟩)|y⟩,
U |ν ′⟩ = |x⟩(U |1⟩)|y⟩ (similar computation), and therefore Uν,ν′ is a
multicontrol U-gate, in the sense that Uν,ν′(|x ′⟩|t⟩|y ′⟩) = |x ′⟩|t⟩|y ′⟩
if x ̸= x ′ or y ̸= y ′ and otherwise it is equal to |x⟩(U |t⟩)|y⟩.
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q-Computing Action of U ∈ U(1) on the plane [|ν⟩, |ν′⟩]

Note that if the controlling value of a bit is 0, then we can reduce it
to the standard controlling value 1 and two X gates, as shown in the
picture (the white circle is to indicate that the control value is 0):

U

≡ X X

U
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q-Computing Action of U ∈ U(1) on the plane [|ν⟩, |ν′⟩]

If ν and ν ′ differ in r ⩾ 2 places, let ν ′′ ∈ Bn be such that ν ′′ differs
in one position from ν and in r − 1 positions from ν ′. By induction
we may assume that there is a q-algorithm to compute Uν′′,ν′ , for the
case r = 1 has already been established. Now a q-algorithm for Uν,ν′
is obtained on noticing that it coincides with Xν,ν′′Uν′′,ν′Xν,ν′′ , where
Xν,ν′′ is defined so that Xν,ν′′ |ν⟩ = |ν ′′⟩, Xν,ν′′ |ν ′′⟩ = |ν⟩ and
Xν,ν′′ |λ⟩ = |λ⟩ if λ ̸= ν, ν ′′. Since Xν,ν′′ is a (form of)
multicontrol-Not, it can be computed by a q-algorithm, and thus so
it can Uν,ν′ .
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Two archtypal q-algorithms
Deutsch-Josza’s q-algorithm

Grover’s searching q-algorithm

Lov Kumar Grover
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Deutsch-Josza q-algorithm Deutsch’s problem

Let f : Bn → B be a map, and assume we know that it is either
constant or balanced (this means that the sets f −1(0) and f −1(1)
have the same cardinal). Then the problem consists in deciding which
of the two possibilities holds.

Remark
The classical solution is based on evaluating f on successive elements
of Bn. This process stops as soon as either we have found two
different values, in which case f has to be balanced, or else the
number of evaluations has exceeded 2n−1, in which case f must be
constant. Since the worse case requires 2n−1 + 1 evaluations, the
complexity of this procedure is exponential in n.
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Deutsch-Josza q-algorithm The q-procedure

1. Initialize a q-computer of order n + 1 with σ1 = |0⟩ n). . .|0⟩|1⟩.
2. Let σ2 = H⊗(n+1)σ1 = ρn+1

∑2n−1
ν=0 |ν⟩(|0⟩ − |1⟩).

3. Let Uf̃ be the q-computation corresponding to the classical
(reversible) computation f̃ : Bn × B → Bn × B ,
(ν, b) 7→ (ν, b + f (ν)) and let σ3 = Uf̃ σ2. Since

Uf̃ (|ν⟩|b⟩) = |ν⟩|b + f (ν)⟩
we clearly have

σ3 = ρn+1
2n−1∑

ν=0

|ν⟩(|f (ν)⟩ − |1 + f (ν)⟩).

Note that this can be written as

ρn+1
2n−1∑

ν∈Bn

(−1)f (ν)|ν⟩(|0⟩ − |1⟩) = ρn+1
∑

ν1,...,νn∈B

(−1)f (ν1···νn)|ν1 · · · νn⟩(|0⟩ − |1⟩).
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Deutsch-Josza q-algorithm The q-procedure

4. Compute σ4 = (H⊗n ⊗ I2)σ3. Since

(H⊗n ⊗ I2)|ν1 · · · νn⟩(|0⟩ − |1⟩) = (H |ν1⟩) · · · (H |νn⟩)(|0⟩ − |1⟩)

= ρn
n∏

r=1

(|0⟩+ (−1)νr |1⟩)(|0⟩ − |1⟩)

= ρn
∑

ν′∈Bn

(−1)ν·ν
′|ν ′⟩(|0⟩ − |1⟩),

where ν · ν ′ = ν1ν
′
1 + · · ·+ νnν

′
n is the scalar product of the binary

vectors ν and ν ′, we find

σ4 = ρ2n+1
∑

ν∈Bn

∑

ν′∈Bn

(−1)ν·ν
′+f (ν)|ν ′⟩(|0⟩ − |1⟩)

= ρ2n+1
∑

ν,ν′∈Bn

(−1)ν·ν
′+f (ν)|ν ′⟩(|0⟩ − |1⟩).
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Deutsch-Josza q-algorithm The q-procedure

Let us look at the coefficient aν′ = ρ2n+1
∑

ν(−1)ν·ν
′+f (ν) of

|ν ′⟩(|0⟩ − |1⟩) in this expression.

If f is constant, aν′ = ρ2n+1(−1)f (0n)
∑

ν(−1)ν·ν
′
, so that

a0n = (−1)f (0n)ρ and aν′ = 0 for ν ′ ̸= 0n.

If f is balanced then a0 = ρ2n+1
∑

ν(−1)f (ν) = 0, and clearly aν′ ̸= 0
for some ν ′ ̸= 0n.

We can summarize these findings as follows:

σ4 =

{
ρ|0n⟩ (|0⟩ − |1⟩) iff is constant,∑

ν′ ̸=0 aν′ |ν ′⟩ (|0⟩ − |1⟩) iff is balanced,

5. The last step consists in measuring the first n q-bits. If f is
constant, the result is 0 with certainty, and if f is balanced, then we
obtain a non-zero integer. Hence, the q-procedure decides exactly
whether f is constant or not.
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Deutsch-Josza q-algorithm The q-algorithm

Deutsch[f ]

→ |0n⟩|0⟩
Rn+1(X ) → |0 · · · 0⟩|1⟩
Hadamard → ρn+1

∑
ν∈Bn |ν⟩

(
|0⟩ − |1⟩

)

Uf̃ → ρn+1
∑

ν∈Bn(−1)f (ν)|ν⟩
(
|0⟩ − |1⟩

)

Hadamard[n] → ρ2n+1
∑

ν,ν′∈Bn(−1)ν·ν
′+f (ν)|ν ′⟩

(
|0⟩ − |1⟩

)

//ρ|0n⟩(|0⟩ − |1⟩) if f is constant, and
//
∑

ν ̸=0n
aν |ν⟩(|0⟩ − |1⟩) if f is balanced.

M{1,...,n} → M
if M = 0 then Constant else Balanced
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Grover’s search algorithm Prelude

Deutsch-Josza

GroverG GroverK

Grover search
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Grover’s search algorithm Prelude

Suppose {ν → xν | ν ∈ Bn}. If we are to search for the ν such that
xν satisfies some condition, like finding the position of a given
number in a random list, in the worst case we will have to examine all
the N = 2n items. In any case, to find a randomly chosen value x we
will need, on the average, N/2 tests.

The remarkable discovery of Grover [2, 3] is that there is a
q-algorithm with complexity O(

√
N/M) that finds an x satisfying

the condition, where M is the number of solutions to the query.

Remark. As most q-algorithms, Grover’s q-algorithm is probabilistic,
in the sense that there is a small probability p that the outcome of a
run does not satisfy the condition. As it is customary is such cases,
running the algorithm some fixed number of times k (this does not
change the complexity) will yield an answer that may be wrong with
probability pk , a value that usually is negligibly small already for
small k .
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Grover’s search algorithm Prelude

Let J1 (J0) be the subset of Bn formed with the ν such that xν
satisfies (does not satisfy) the condition in question. Consider the
map f : Bn → B such that

f (ν) =

{
0 if ν ∈ J0

1 if ν ∈ J1
.

Define the unit q-vectors

ξ = 1√
N−M

∑

ν∈J0
|ν⟩ and ξ′ = 1√

M

∑

ν∈J1
|ν⟩.

The non-zero summands in ξ′ (respectively ξ) are the basis vectors
corresponding to the solutions (non-solutions) of our query.
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Grover’s search algorithm Prelude

Note also that

h(n) =
√

N−M
N
ξ +

√
M
N
ξ′ = cos(φ

2
)ξ + sin(φ

2
)ξ′,

where the last equality defines φ ∈ (0, π) uniquely (Grover angle):
φ = 2 arcsin(

√
M/N).

ξ

ξ′

Remark. The trigonometric formulae for the double angle imply

sin(φ) = 2
√
M

√
N−M

N
, cos(φ) = N−2M

N
.
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Grover’s search algorithm Grover’s q-procedure

To explain how Grover’s procedure works, we need to introduce two
auxiliary q-computations of order n, which we denote Gf and K .

The definition of Gf is as follows (ν ∈ Bn):

Gf (|ν⟩) =
{
−|ν⟩ if ν ∈ J1

|ν⟩ if ν ∈ J0

In other words, Gf is the reflexion with respect to the space spanned
by the non-solutions. In particular, Gf (ξ) = ξ and Gf (ξ

′) = −ξ′.
Therefore we also have

Gf (h(n)) = Gf

(
cos
(
φ
2

)
ξ + sin

(
φ
2

)
ξ′
)
= cos

(
φ
2

)
ξ − sin

(
φ
2

)
ξ′.
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Grover’s search algorithm Grover’s q-procedure

The q-computation K , which does not depend on f , is defined as

K (x) =
∑

ν

(2µx − xν)|ν⟩,

where µx =
1
N

∑
ν xν , the average of the amplitudes xν of x (we say

that K is the inversion with respect to the mean). This linear map is
indeed a q-computation, for it preserves the norm:

|K (x)|2 =
∑

ν

(2µx − xν)(2µ̄x − x̄ν)

= 4Nµx µ̄x − 2µ̄x

∑

ν

xν − 2µx

∑

ν

x̄ν +
∑

ν

xν x̄ν

= 4Nµx µ̄x − 2Nµ̄xµx − 2Nµx µ̄x + |x |2

= |x |2.
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Grover’s search algorithm Grover’s q-procedure

Now Grover’s q-procedure can be described as follows:

1. Let u0 = h(n) = cos
(
φ
2

)
ξ + sin

(
φ
2

)
ξ′.

2. For j = 1, . . . ,m = ⌊ π
2φ
⌋, define uj = K (Gf (uj−1)).

3. Return M(um).

The main reason why this procedure works is that in the plane
spanned by ξ and ξ′ the map KGf is a rotation of amplitude φ.
Actually it is enough to show that

Kξ = cos(φ)ξ + sin(φ)ξ′

and
K (−ξ′) = − sin(φ)ξ + cos(φ)ξ′,

and these follow from straightforward computations using the
definition of K and the formulae in Remark on page 55. Details . In
particular we have

uj = ξ cos 2j+1
2
φ+ ξ′ sin 2j+1

2
φ.
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Grover’s search algorithm Grover’s q-procedure

This tells us that the optimal choice for the number m of iterations in
step 2 is the least positive integer such that um is closest to ξ′, and
this clearly occurs when m is the nearest integer to

(
π

2
− φ

2
)/φ =

π

2φ
− 1/2,

that is, when m = ⌊ π
2φ
⌋ =

⌊
π

4 arcsin(
√

M/N)

⌋
.2

2 We use that the nearest integer to x − 1
2 is ⌊x⌋.
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Grover’s search algorithm Grover’s q-procedure

Remark. Since arcsin(x) > x for x ∈ (0, π
2
), we have

m ⩽
π

4 arcsin
√
M/N

⩽
π

4

√
N/M .

Hence also m ⩽ ⌊π
4

√
N/M⌋. Since π

4x
− π

4 arcsin(x)
< 1 for all

x ∈ (0, 1), we also have ⌊π
4

√
N/M⌋ ⩽ m + 1. A more detailed study

shows that when x → 0 the intervals in which ⌊ π
4x
⌋ = ⌊ π

4 arcsin(x)
⌋+ 1

become negligibly small compared to the intervals in which
⌊ π
4x
⌋ = ⌊ π

4 arcsin(x)
⌋. Thus if we iterate ⌊π

4

√
N/M⌋ times the loop in

step 2 of Grover’s q-procedure, we would get the right number of
rotations most of the time and otherwise we would go one step
beyond, which in practice gives a q-vector that is almost as good as
the previous one.
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Grover’s search algorithm Grover’s q-procedure

The probability of obtaining a right answer in a run of Grover’s
q-procedure is p = sin2(2m+1

2
φ), as sin(2m+1

2
φ) 1√

M
is the amplitude

in um of any of the M solutions. Similarly, the probability of obtaining
an erroneous answer is q = cos2(2m+1

2
φ). Since the specification on

m entails that 2m+1
2
φ = π

2
+ ε, with |ε| ⩽ φ/2, we see that

p = sin2(π
2
+ ε) = cos2(ε) = cos2(|ε|)

⩾ cos2
(
φ
2

)
= cos2

(
arcsin

(√
M/N

))
= 1− M

N
.

Hence also q = 1− p ⩽ M/N .

SXD (IMTech & BSC) Quantum Algorithms 29/6/2023 61 / 122



Grover’s search algorithm Grover’s q-procedure

Example. Let us illustrate the ideas so far with the case n = 8 and
M = 1. We get N = 256, φ = 7.166643◦, m = 12. The slope of the
vector u12 is 89.583042◦ and the probability of success is
p = 0.999947. Note that p is much closer to 1 than the lower bound
1−M/N = 1− 1/256 = 0.996094. The probability of error is
q = 0.000053, again much closer to 0 than the upper bound
M/N = 1/256 = 0.003906.
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Grover’s search algorithm Grover’s q-procedure

ξ ξ′

ξ′

ξ
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Grover’s search algorithm Grover’s q-algorithm

Given a map f : Bn → B for which we know that M = |f −1(1)| > 0,
this q-algorithm computes Grover’s q-procedure for f . We will work
at order n + 1 and we will let f̃ denote the classical reversible
computation defined by (x , b) 7→ (x , b + f (x)), x ∈ Bn, b ∈ B . As
before, the corresponding q-computation will be denoted Uf̃ . We will
use the notations m and uj (j = 0, 1, . . . ,m) from the forgoing
discussion.

It is easy to phrase the sought q-algorithm Grover[f ] in terms of
q-algorithms GroverG[f ] and GroverK for Gf and K .
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Grover’s search algorithm Grover’s q-algorithm

Grover[f ,m]

→ |0n⟩
Hadamard → u0 = h(n)

for j ∈ {1, . . . ,m} do
GroverK GroverG[f ] |uj−1⟩ → |uj⟩

M(um) → M
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Grover’s search algorithm GroverG[f ]

GroverG[f ]

→ |x⟩|1⟩
// Set x = x0 + x1, x i =

∑
ν∈Ji xν |ν⟩, i = 0, 1.

Rn+1(H) → ρ
(
|x0⟩|0⟩+ |x1⟩|0⟩ − |x0⟩|1⟩ − |x1⟩|1⟩

)

Uf̃ → ρ
(
|x0⟩|0⟩+ |x1⟩|1⟩ − |x0⟩|1⟩ − |x1⟩|0⟩

)

= (|x0⟩ − |x1⟩)(H |1⟩)
Rn+1(H) → |Gf x⟩|1⟩
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Grover’s search algorithm GroverK

GroverK

→ |x⟩
Hadamard
for l ∈ {1, . . . , n} do

Rl(X )
//This loop acts as X⊗n

C{2,...,n},1(Z )
//Z to first q-bit controlled by all the others.
for l ∈ {1, . . . , n} do

Rl(X )
//X⊗n

Hadamard → |K (x)⟩
Observations
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q-Fourier transform

Don Coppersmith
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QFT Kitaev

Shor-Order

Shor-Factor
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QFT Definiton

The Fourier transform (FT) on H(n) is the linear operator

F : H(n) → H(n), |ν⟩ 7→ fν = ρn
∑

λ

ξνλ|λ⟩,

where ξ = ξn = e i
2π
2n = e i

π
2n−1 .

Observe that F ∈ U (n):

⟨fν |fν′⟩ =
1

2n

∑

λ

ξ(ν
′−ν)λ = δνν′ ,

for, if l ̸= 0,
2n−1∑

k=0

ξlk =
(ξl)2

n − 1

(ξl − 1)
= 0.

Let us give an idea about how to produce a internal q-algorithm to
obtain F .
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QFT q-procedure

We have, with ρ = 1/
√
2,

F |ν⟩ = ρn
2n−1∑

ν′=0

e
2πiνν′

2n |ν ′⟩

= ρn
∑

ν′1,...,ν
′
n∈B

e
2πiν

(
ν′1
21

+
ν′2
22

+···+ ν′n
2n

)
|ν ′1 · · · ν ′n⟩

= ρn
∑

ν′1,...,ν
′
n∈B

n⊗

l=1

e
2πiνν′l

2l |ν ′l ⟩

= ρn
n⊗

l=1

(
|0⟩+ e

2πiν

2l |1⟩
)
.

But
ν

2l
=
νn
2l

+
νn−1

2l−1
+ · · ·+ νn−(l−1)

2
+
(
νl + · · ·+ ν12

n−l−1
)
.
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QFT q-procedure

Since the part enclosed in parenthesis is an integer, the l-th tensor
factor in the previous expression is equal to

|0⟩+ e iπ
νn

2l−1 · · · e iπνn−(l−1)|1⟩

Therefore

F |ν⟩ = ρn
(
|0⟩+ e iπνn |1⟩

) (
|0⟩+ e iπ

νn
2 e iπνn−1|1⟩

)
· · ·

(
|0⟩+ e iπ

νn
2n−1 · · · e iπ

ν2
2 e iπν1|1⟩

)
. (∗)

If we write this tensor product in reverse order, with one ρ for each
factor,

ρ
(
|0⟩+ e iπ

νn
2n−1 · · · e iπ

ν2
2 e iπν1|1⟩

)
ρ
(
|0⟩+ e iπ

νn
2n−2 · · · e iπν2|1⟩

)
· · ·

· · · ρ
(
|0⟩+ e iπνn/2e iπνn−1|1⟩

)
ρ
(
|0⟩+ e iπνn |1⟩

)
,

then for the l-th factor we have:
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QFT q-algorithm

ρ
(
|0⟩+ e iπ

νn
2n−l · · · e iπ

νl+1
2 e iπνl |1⟩

)
= Rn−l · · ·R1H |νl⟩

where Rs means, for the l-th bit, Cl+s,l(Siπ/2s ). So we have the
following q-algorithm:

QFT

for l ∈ {1, . . . , n} do

Rl(H)

for s ∈ {1, . . . , n − l} do Cl+s,l(Siπ/2s )

for l ∈ {1, . . . , ⌊n/2⌋} do Swap[l , n − l + 1]

This shows that QFT computes F with complexity O(n2). The
swaps at the end are meant to restore the original order.

SXD (IMTech & BSC) Quantum Algorithms 29/6/2023 73 / 122



QFT q-algorithm

Here is a diagram to illustrate the case n = 4.

ν

ν

ν

ν

ν

Remark. Let us point out, for later reference, that the formula (∗)
can be written in the form

F |ν⟩ = ρn(|0⟩+e2πi 0.νn |1⟩)(|0⟩+e2πi 0.νn−1νn |1⟩) · · · (|0⟩+e2πi 0.ν1···νn |1⟩),
where, for binary digits b1, b2, . . . ,

0.b1b2 · · · =
b1
2

+
b2
22

+ · · ·
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Kitaev’s q-phase estimation

Alexei Kitaev
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Kitaev’s q-phase estimation The problem

Let U be a q-computation of order n, and let u ∈ H(n) an eigenvector
of U . The corresponding eigenvalue can be written in the form e2πiφ,
with φ ∈ [0, 1). Assuming that U and u are known, then the phase
estimation problem consists in obtaining r bits φ1, . . . , φr , for a given
r , of the binary expansion 0.φ1φ2 · · · of φ.

The aim of this section is to phrase and analyze the interesting
q-algorithm discovered by Kitaev [4] to solve this problem.

Since we need some ancillary q-bits, say m, we will work in
H(m) ×H(n). The algorithm assumes that we can initialize H(n) with
the q-vector u and also that we are able to perform the ‘controlled’
q-computations Cm−l+1(U

2l−1
), for l = 1, . . . ,m, defined on

H(m) ×H(n) as follows:
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Kitaev’s q-phase estimation The problem

Cm−l+1(U
2l−1

)
(
|φ1 · · ·φm⟩|u⟩

)
={

|φ1 · · ·φm⟩|u⟩ if φm−l+1 = 0

|φ1 · · ·φm⟩
(
U2l−1|u⟩

)
if φm−l+1 = 1
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Kitaev’s q-phase estimation Kitaeve[U, u]

Kitaev[U , u]

0. → |0m⟩|u⟩
1. Hadamard[m] → |h(m)⟩|u⟩
2. for l ∈ 1..m do

Cm−l+1(U
2l−1

)
3. QFT†[m]
4. M{1,...,m}

We will analyze this algorithm in two steps, denoted A and B below.
In the first we will assume that φ = 0.φ1 · · ·φm and in the second we
will look at the general case.
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Kitaev’s q-phase estimation Kitaeve[U, u]

The following diagram illustrates the steps 0-2.

|0〉

|0〉

|0〉

...

|0〉

...

...
...

...

...

...

...

...

...

...

...

H

H

H

H

U U2 U4 U2m−1|u〉

|0〉+ e2πi(2
m−1ϕ)|1〉

|0〉+ e2πi(2
2ϕ)|1〉

|0〉+ e2πi(2
1ϕ)|1〉

|0〉+ e2πi(2
0ϕ)|1〉

⎧
⎪⎪⎨
⎪⎪⎩

n

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m
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Kitaev’s q-phase estimation Part A

The action of U2l−1
only changes |u⟩ by a factor, either 1 or e2πi2

l−1φ

depending on whether the controlling bit is |0⟩ or |1⟩. Now this
factor may be moved next to the controlling bit and therefore the
state at the end of the loop 2 can be written in the form

ρm
(
|0⟩+ e2πi2

m−1φ|1⟩
)(

|0⟩+ e2πi2
m−2φ|1⟩

)
· · ·
(
|0⟩+ e2πi2

0φ|1⟩
)
.

(4)
This, in the notation of binary expansions, takes the form

ρm
(
|0⟩+ e2πi 0.φm |1⟩

) (
|0⟩+ e2πi 0.φm−1φm |1⟩

)
· · ·
(
|0⟩+ e2πi 0.φ1···φm |1⟩

)
,

(5)
as e2πik = 1 for any integer k . But by the Remark on page 74, this
expression is equal to F |φ⟩, which is computed by the QFT
algorithm. Thus it is clear that we recover the state |φ⟩|u⟩ by
applying F † ⊗ I2n , where F † is the inverse of F . We have denoted
QFT†[m] the q-algorithm for F † that is obtained by carrying out
QFT in reverse order. Thus Kitaev supplies φ exactly in the case
where φ can be expressed with m bits.
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Kitaev’s q-phase estimation Part B

The reasoning is somewhat more involved when φ cannot be
expressed using m bits. In this case, F † ⊗ I2n does not give the
q-vector |φ⟩|u⟩, but a superposition of the form

∑
al |l⟩|u⟩. As we

will show below, this difficulty can be overcome in order to obtain the
first r bits of φ provided r ⩽ m.

By expanding the product in the formula (5), we see that it can be
writen in the form

ρm
2m−1∑

k=0

e2πiφk |k⟩|u⟩.
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Kitaev’s q-phase estimation Part B

The result in step 3 is

ρm
2m−1∑

k=0

e2πiφk
(
F †|k⟩

)
|u⟩ = ρ2m

2m−1∑

k=0

e2πiφk
2m−1∑

l=0

e−
2πikl
2m |l⟩|u⟩

= ρ2m
2m−1∑

l=0

(
2m−1∑

k=0

e2πi(φ−l/2m)k

)
|l⟩|u⟩

= ρ2m
2m−1∑

l=0

1− e2πi(φ−l/2m)2m

1− e2πi(φ−l/2m)
|l⟩|u⟩

Finally the result of step 4, the measurement of the first m bits, is
also clear: it will be an m-bit integer l drawn with probability3

pl = ρ4m
∣∣∣∣
1− e2πi(φ−l/2m)2m

1− e2πi(φ−l/2m)

∣∣∣∣
2

= ρ4m
sin2 π

(
φ− l/2m

)
2m

sin2 π
(
φ− l/2m

) (∗)

3 We use the formula |1− e iα|2 = 4 sin2(α/2), which is a consequence of
|1− e iα|2 = (1− e iα)(1− e−iα) = 2− (e iα + e−iα) = 2(1− cosα).
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Kitaev’s q-phase estimation Part B

With this distribution law we can now estimate what are the chances
that the first r bits of l (0 < r ⩽ m) agree with f = φ1 · · ·φr .
Indeed, using the probabilities pl one can show ( Details ) that

p
(
|2mφ− l | > 2m−r

)
⩽

1

2(2m−r − 2)
. (∗∗)

Therefore we can guarantee that r bits are correct with probability
1− ε if 1

2(2m−r−2)
⩽ ε, a relation that is equivalent to

m ⩾ r + log2

(
2 +

1

2ε

)
.
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Modular order of an integer
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Modular order of an integer Prelude

The object of this section is a presentation of Shor’s q-algorithm for
finding ordN(a), the order of a positive integer a modulo a positive
integer N , provided (a,N) = 1.

By definition, r = ordN(a) is the least positive integer such that
ar ≡ 1 mod N or, in other words, the order of a seen as an element
of the group Z∗

N .

From a classical point of view, finding ordN(a) is related to the
search of the divisors of ϕ(N) (where ϕ denotes the classical Euler’s
totient function), which has exponential complexity in terms of
n = log2(N) (see [5] for details). By contrast, Shor’s q-algorithm
produces a probabilistic solution which is polynomial in n.
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Modular order of an integer Notations

Set r = ordN(a) and n = ⌈log2(N)⌉. Next define the q-computation
Ua = Ua,N of order n by the relation

Ua|j⟩ =
{
|aj mod N⟩ if j < N

|j⟩ if N ⩽ j < 2n.

It is indeed a q-computation, as the map ZN → ZN such that j 7→ aj
mod N is bijective (a permutation map). The inverse q-computation
is Ua−1,N . Finally define, for every s ∈ {0, . . . , r − 1}, the q-vector of
order n

us =
r−1∑

j=0

e−2πij s
r |aj mod N⟩.

Applying the operator Ua to us we get

Uaus =
r−1∑

j=0

e−2πij s
r |aj+1 mod N⟩ = e2πi

s
r us ,

which means that us is an eigenvector of Ua,N with eigenvalue e2πi
s
r .

SXD (IMTech & BSC) Quantum Algorithms 29/6/2023 86 / 122



Modular order of an integer A key observation

At this point it would seem natural to apply Kitaev’s q-algorithm to
estimate the phase s/r of e2πi

s
r , with the idea that the information

gained in this way could give us precious information about r .
However this does not work, since the eigenvector us would be known
only if r were already known.

Fortunately this can be circumvented with the observation that

1√
r

r−1∑

s=0

|us⟩ = |1n⟩.
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Modular order of an integer A key observation

Indeed, if in Kitaev’s q-algorithm we set m = 2n + 1 + ⌈2 + 1
2ε
⌉ and

we let the initial state be |0m⟩|1n⟩, then, with probability (1− ε)/r ,
we will get an estimate φ̃ ≈ s/r with 2n + 1 correct bits. Now we
have that

| s
r
− φ̃| ⩽ 1

22n+1 ⩽ 1
2r2

and hence, letting s/r = s ′/r ′ with (s ′, r ′) = 1, the inequality∣∣ s′
r ′
− φ̃

∣∣ ⩽ 1
2r ′2

also holds. By a well known result in continued fractions (see [6]),
s ′/r ′ must be a convergent of φ̃. As φ̃ is a rational number, its set of
convergents is finite and can be computed by the continued fraction
algorithm.

Summarizing, the choice of m in the phase estimation procedure
assures that, with a probability of 1− ε, there exists a convergent φ̃
such that its denominator is either r if (s, r) = 1 or a divisor of r if
(s, r) ̸= 1.

SXD (IMTech & BSC) Quantum Algorithms 29/6/2023 88 / 122



Modular order of an integer A key observation

If (s, r) = 1 then r is the order of a. This fact can be checked directly
computing arn mod N where sn/rn is a convergent of φ̃. If (s, r) ̸= 1,
then ar mod N is not equal to 1, and we need to repeat the phase
estimation algorithm in order to get an estimation such that
(s, r) = 1. Using the prime number theorem (see [5]), one can show
that repeating the algorithm O(n) times, with high probability we get
an estimation φ̃ with a convergent s/r such that (s, r) = 1 Details .

The number of steps of the whole q-algorithm is O (n4): the more
complex step is associated to the continued fraction algorithm, with
complexity O (n3), which needs to be repeated O(n) times in order to
assure, with high probability, a convergent s/r such that (s, r) = 1.

With further improvements of these ideas (see [7]) the complexity
can be reduced to O (n3).
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Modular order of an integer Shor’s order-finding

Let 1 < a < N be positive integers such that (a,N) = 1 and ε > 0 a
(small) real number. The algorithm described below finds
r = ordN(a) with probability 1− ε with an average number of
iterations which is O(n). The total complexity is O(n4). The
algorithm ContFrac returns, given a rational number, the list of the
denominators of its convergents. See ContFrac .
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Modular order of an integer Shor’s order-finding

Shor-Order[a,N , ε]
n = ⌈log2(N)⌉, m = 2n + 1 + log2

(
2 + 1

2ε

)

//Working q-space: H(m) ⊗H(n)

0. → |0m⟩|0n⟩
1. Hadamard[m] → ρm

∑2m−1
j=0 |j⟩|0n⟩

2. Ua,N → ρm√
r

∑r−1
s=0

∑2m−1
j=0 e2πij

s
r |j⟩|us⟩

3. QFT†[m] → 1√
r

∑r−1
s=0

∣∣∣s̃/r
〉
|us⟩

4. M = M{1,...,n} → s̃/r
5. ContFrac → D
6. for r ′ ∈ D do

if ar
′
mod N = 1, return r ′

7. return Not-successful
//r ′|r , and r ′ = r in O(n) iterations

Since the condition r ′ = r is met in O(n) iterations, we will get the
correct order r with an average time O(n4). This is the algorithm we
need in the next Section and will be denoted Shor-Order(a,N).
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Shor’s factoring

Peter Shor
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Shor’s factoring From order-finding to factoring

Let N be an odd positive integer that is not a prime power.

The main observation is that we can obtain a proper factor of N if
we are able to produce an integer x ∈ {2, . . . ,N − 1} such that

1. (x ,N) = 1;

2. r = ordN(x) is even.

3. x
r
2 + 1 or x

r
2 − 1 is not divisible by N .

Indeed, since by definition r is the least positive integer such that
x r ≡ 1 mod N (the condition 1 implies that this number exists), we
see that x r − 1 =

(
x

r
2 − 1

) (
x

r
2 + 1

)
is divisible by N . Then

gcd
(
x

r
2 − 1,N

)
are divisors of N , and at least one is a proper divisor

of N .
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Shor’s factoring From order-finding to factoring

Proposition Let N be a positive integer with m ⩾ 2 distinct prime
factors. Then the density of the set

{x ∈ Z∗
N | r = ordN(x) is even and x

r
2 + 1 is not divisible by N}

in Z∗
N is ⩾ 1− 1

2m−1 . Hints
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Shor’s factoring The q-algorithm

Shor-Factor[N]

x , r , d
1. random(N) → x
2. if d = (x ,N) > 1: return d
3. Shor-Order(x ,N) → r
4. if r ≡ 1 mod 2, go to 1.
5. if d =

(
x

r
2 − 1,N

)
> 1 and d < N : return d

6. if d =
(
x

r
2 + 1,N

)
> 1 and d < N : return d

7. go to 1

The complexity of Shor-Factor is determined by step 3, and so its
average cost is O(n4), n = log2(N).

A more detailed analysis shows that the average number of go to in
steps 4 and 7 is O(1) Comments
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Appendix A
Remarks and Proofs
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A. Remarks and Proofs P.8

The number of Segre 2× 2 determinants is 22n−3 − 2n−2. The minimum
number of sufficient conditions turns out to be 2n − n − 1 and for n ⩾ 2,
22n−3 − 2n−2 ⩾ 2n − n− 1, with equality (= 1) only for n = 2. For n = 3,
the values are 6 and 4 (so 2 redundant equations); for n = 4, 28 and 11,
so 17 redundant equations; and for large n, the number of redundant
equations is asymptotically equal to the number of equations. For n = 10,
for example, the two numbers are 130816 and 1013, which means 129803
redundancies.

P
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A. Remarks and Proofs P.31

Let U = [ujk ] ∈ U (n) and set N = 2n. Then U = e iαU1U2 · · ·UN−1,
with α ∈ R and where Ul = Ul ,l+1 · · ·Ul ,N , with Ul ,j an element of

U (1) acting on the plane [|l⟩, |j⟩] in the standard form (using the
reference |j⟩ and |k⟩) and acting as the identity on any |k⟩ such that
k ̸= l , j . This expression of U can be constructed as follows. The
matrix U1,2 is taken as the identity if u21 = 0 and otherwise as[

u11/ρ −ū21/ρ
u21/ρ ū11/ρ

]
, ρ =

√
|u11|2 + |u12|2,

so that the entry 21 of the matrix U†
1,2U is 0. Defining U1,3, ..., U1,N

in a similar way, we achieve that all entries of the first column of
U ′ = U†

1,N · · ·U†
1,2U , other than the entry 11, are 0. Since U ′ is

unitary, so that any two of its columns are orthogonal, all entries of
the first row of U ′, other than the entry 11, are also 0. Since the
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A. Remarks and Proofs P.31

entry 11 of U ′ is a unit complex number, we see that there is α1 ∈ R
such that e−iα1U†

1,N · · ·U†
1,2U has the form

[
1 0n

0†
n V

]
, V ∈ U (N−1).

Now, by induction, V = e iβU2 · · ·UN−1, with β ∈ R and where
Ul = Ul ,l+1 · · ·Ul ,N with Ul ,j an element of U (1) acting on the plane
[|l⟩, |j⟩] and as the identity on any |k⟩, k ̸= l , j . Finally the claim
follows by defining α = α1 + β and U1 = U1,2U1,3 · · ·U1,N . Note that
the number of the Ul ,j different from the identity is at most
N(N − 1)/2.

The proof can be completed on noticing that in the Example 42 we
established that the Ul ,j can be expressed as a product of U-gates
and Cr ,s-gates.

P
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A. Remarks and Proofs P.31

We refer to Section 4.5.3 of [7] for a sketch of how the proof goes.
But even in this encyclopedic book we read that providing all the
details “is a little beyond our scope” (p. 198). A more complete
proof, including the more subtle mathematical details, can be found
in [8]. In particular it contains a full proof of the key fact that if
cosα = cos2(π/8), then α/π is irrational (Lemma 3.1.8).

P
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A. Remarks and Proofs P.58

Since µξ =
1
N

N−M√
N−M

=
√
N −M/N ,

K (ξ) =
∑

ν∈J0

(
2
√
N −M/N − 1/

√
N −M

)
|ν⟩+

∑

ν∈J1

2
√
N−M
N

|ν⟩

=
∑

ν∈J0

N−2M
N
√
N−M

|ν⟩+
∑

ν∈J1

2
√
M

√
N−M

N
√
M

|ν⟩

= cos(φ)ξ + sin(φ)ξ′.

Similarly, since µξ′ = M/N
√
M =

√
M/N ,

K (ξ′) =
∑

ν∈J0

(
2
√
M

N

)
|ν⟩+

∑

ν∈J1

(
2
√
M

N
− 1√

M

)
|ν⟩

=
∑

ν∈J0

(
2
√
M

√
N−M

N
1√

N−M

)
|ν⟩+

∑

ν∈J1

(
2M−N
N
√
M

)
|ν⟩

= sin(φ)ξ − cos(φ)ξ′.

P
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A. Remarks and Proofs P.67

The justification that GroverK computes the operator K follows
from the following observations:

1. K = 2Ph(n) − IN , where Pa denotes the orthogonal projector onto
a (for unit a, Pa(x) = ⟨a|x⟩a ). Indeed, the claim follows immediately
from the relation

Ph(n)(x) = ⟨h(n)|x⟩h(n) = ρ2n(
∑

xν)
∑

|ν⟩ = µx

∑
|ν⟩

and the definition of K (page 57).

2. K = H⊗n
(
2P|0n⟩ − IN

)
H⊗n. This is a direct consequence of the

formula UPaU
−1 = PUa, where U is a arbitrary q-computation and a

any q-vector, and the preceding formula. Note that if we apply
UPaU

−1 to Ux we obtain Ua if x = a and 0 if x is orthogonal to a.
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A. Remarks and Proofs P.67

3. IN − 2P|0n⟩ = X⊗nC{2,...,n},1(Z )X⊗n. Note that IN − 2P|0n⟩ changes
the sign of |0n⟩ and is the identity on all |ν⟩ with ν ̸= 0n. In relation
to the right hand side of the formula, observe that C{2,...,n},1(Z ), and
hence the whole composition, will do nothing on |ν⟩ if not all
ν2, . . . , νn are 0. If ν2 = · · · νn = 0, then C{2,...,n},1(Z ) applies Z to
|ν̄1⟩, and, by the definition of Z (Z |0⟩ = |0⟩, Z |1⟩ = −|1⟩), this
action does nothing if ν1 = 1 and changes its sign if ν1 = 0.

4. The analysis of Grover’s q-algorithm has to be completed with a
q-algorithm for C{2,...,n},1(Z ). But this has been done in page 40.

P
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A. Remarks and Proofs P.83

The probability p(|2mφ− l | > 2m−r ) is equal to
−(2m−r+1)∑

l=−2m−1+1

pl +
2m−1∑

l=(2m−r+1)

pl .

Now the bound (∗∗), p. 83, can be derived from the explicit
expression (∗) for pl (page 82). We refer to [7] for further details.

P
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A. Remarks and Proofs P.89

The Prime Number Theorem asserts that the number of primes
which are smaller than r is asymptotically equal to r

log(r)
. Hence, the

probability of choosing (uniformly) a random prime number
0 < s < r is asymptotically equal to

p(0 < s < r , s is prime) = p ∼ 1

log r
>

1

logN
.

Then the expected number of iterations in order to find a prime
number s < r is equal to:

∞∑

i=1

i(1− p)i−1p = p
∞∑

i=1

i(1− p)i−1

=
p

(1− (1− p))2
=

1

p
∼ log(r) < log(N).

Hence, after not more than log(N) = O(n) choices, we expect to
choose a value of s which is prime with r .

P
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A. Remarks and Proofs P.90

The continuous fraction representation of a rational number x is a
vector of integers [x0, x1, . . . , xn], with xj > 0 for j = 1, . . . , n. The
relation between x and [x0, x1, . . . , xn] can be displayed as a
‘continuous fraction’:

x = x0 +
1

x1 +
1

. . .

xn−1 +
1

xn
By abuse of notation we will also write x = [x0, x1, . . . , xn]. In these
terms the continuous fraction can be expressed by the recursive
formula

[x0, x1, . . . , xn] = x0 +
1

[x1, . . . , xn]
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A. Remarks and Proofs P.90

The rational numbers cj = [x0, x1, . . . , xj ], j = 0, 1, . . . , n, are called
the convergents of the number x . The list of denominators
{d0, d1, . . . , dn} of these convergents can be computed recursively:

d0 = 1, d1 = x1, dj = xjdj−1 + dj−2 (j = 2, ..., n)

Actually it is easy to prove by induction that cj = mj/dj , where

m0 = x0, m1 = x1x0 + 1, mj = xjmj−1 +mj−2 (j = 2, ..., n)

Thus {d0, d1, ..., dn} can be computed as follows

ContFrac(x):=

a=floor(x), k=1, d={0,1}

while x!=a and j<n do

x=1/(x-a)

a=floor(x)

d=d|{a*d.(j-1)+d.(j-2)}

j=j+1

return tail(d)
P
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A. Remarks and Proofs P.94

Prove that

p
(
x ∈ Z∗

N | r = ordN(x) is odd or x
r
2 + 1 is divisible by N

)
⩾

1

2m
.

For that, write N = pα1
1 . . . pαm

m , where p1, . . . , pm are distinct prime
numbers. Then, Z∗

N = Z∗
p
α1
1

× · · · × Z∗
pαmm

. Write xj for the reduction

of x mod p
αj

j , and rj for the order of xj in Z∗
p
αj
j

. Denote by dj the

biggest exponent such that 2dj divides rj . Denote by d the biggest
exponent such that 2d divides r . Then, it is easy to show that if r is
odd or if r is even and x

r
2 ≡ −1 mod N , then dj = d for all d .

To conclude, use that if 2dj is the largest power of 2 dividing φ(p
αj

j ),
then

p
(
x ∈ Z∗

N | 2dj divides ord
p
αj
j
(x)
)
=

1

2
.

P
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A. Remarks and Proofs P.95

Denote by p the probability of the event
{x ∈ Z∗

N | r = ordN(x) is even and x
r
2 + 1 is not divisible by N},

when x is chosen uniformly at random at Z∗
N . Then, the expected

number of iterations of the algorithm is equal to:
∞∑

i=1

i(1−p)i−1p = p
∞∑

i=1

i(1−p)i−1 =
1

p
⩽

2m−1

2m−1 − 1
= 1+

1

2m−1 − 1
.

As m > 1, the expected number of iterations is O(1).

P
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Appendix B
Physics footnotes
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Phisics footnotes What is a q-computer?

In order to execute q-programs of order n on a physical support, it is
required to have a quantum register of length n capable of being
initialized at any state, |0n⟩ by default, and “implementations” of the
operations

Rj(U) [with U ∈ {H , S ,T} in the restricted case]

Cj ,k

ML(σ) for any state σ and any subregister L. In particular, M(σ)
when L is the whole register. If |L| = r , ML(σ) delvers M ∈ B r

with probability pM = |σM
L |2 and resets the state to u(σM

L ).

A quantum computer (of order n) is a quantum register Σ(n)

endowed with such implementations.

Its main beauty is that such a computer allows us to perform (or
approximate) any q-computation.
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Phisics footnotes No-cloning theorem

In its most basic form, the no-cloning theorem is the assertion that
there is no q-computation U of order 2 that satisfies

U(|x⟩|0⟩) = |x⟩|x⟩,
for all one q-bit states x .

Indeed, consider |x⟩ = ρ(|b⟩+ |b′⟩), b ∈ B , and b′ = 1+ b. Then we
have

U(|x⟩|0⟩) =
{
|x⟩|x⟩ = ρ2(|b⟩|b⟩+ |b⟩|b′⟩+ |b′⟩|b⟩+ |b′⟩|b′⟩)
ρU(|b⟩|0⟩+ |b′⟩|0⟩) = ρ(|b⟩|b⟩+ |b′⟩|b′⟩) ,

which is a contradiction.
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Phisics footnotes Spooky actions

A possible state of a q-register of order 2 is

σ = 1√
2
(|00⟩+ |11⟩).

Let’s assume that the first q-bit is at A and the other at B . If A and
B successively measure their q-bit, it turns out that they get the
same result.

Indeed, the state at A collapses in |00⟩ or in |11⟩ depending on
whether A measures 0 or 1, respectively (i.e., the normalized
orthogonal projection of σ in the space {|0b⟩}b∈B is |00⟩ and is |11⟩
in the space {|1b⟩}b∈B . Thus the state of the pair is |00⟩ if A
measures 0 and it |11⟩ if A measures 1. It is thus clear that the
measurement of the second q-bit by B will be 0 in the first case and
1 in the second.

This situation puzzled its discoverers, Einstein, Podolski and Rolfsen
(and anyone since then) because it appeared to them as a ’spooky
action at a distance’.
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Phisics footnotes Teleportation

Quantum computing techniques allow transferring the state of a q-bit
in A to the same state of a q-bit in B (the state disappears in A and
appears in B). Here is an outline of the procedure.

Let σ = α|0⟩+ β|1⟩ be the (unknown) state of a q-bit in A that we
wish to teleport to B .

Let τ = 1√
2
(|00⟩+ |11⟩) an EPR state shared by A and B .

A performs a C12 gate on the state

στ = 1√
2
[α|0⟩(|00⟩+ |11⟩) + β|1⟩(|00⟩+ |11⟩)],

obtaining the state
1√
2
[α|0⟩(|00⟩+ |11⟩) + β|1⟩(|10⟩+ |01⟩)].

Now A performs H on the first q-bit and obtains
1√
2
[α(|0⟩+ |1⟩)(|00⟩+ |11⟩) + β(|0⟩ − |1⟩)(|10⟩+ |01⟩)].
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Phisics footnotes Teleportation

This can be rearranged in the form
1√
2

(
|00⟩(α|0⟩+ β|1⟩) + |01⟩(α|0⟩ − β|1⟩)+
|10⟩(α|1⟩+ β|0⟩) + |11⟩(α|1⟩ − β|0⟩)

)

Now A measures q-bits 1 and 2. The following table shows, for each
of the possible results, the status of the q-bit in B :

Result 00 01 10 11
q-bit B α|0⟩+ β|1⟩ α|0⟩ − β|1⟩ α|1⟩+ β|0⟩ α|1⟩ − β|0⟩
Action in B I X Z XZ

Finally B can reproduce the state σ in its q-bit if it knows the result
of the measurement made by A (00, 01, 10 or 11) by simply
performing the actions I , X , Z or XZ , respectively.

σ

σ
τ
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Outlook
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Outlook Further reading

“ Even if we don’t have general purpose quantum computers, we
have already expanded considerably our understanding of, among
others, quantum information theory, quantum cryptography,
quantum Hamiltonian dynamics, classical computational complexity
theory, the nature of randomness, and basic issues at the heart of the
philosophy of science—including whether quantum mechanics itself is
a falsifiable theory. In short, quantum computing is pretty
irresistible!” (from [9], Avi Wigderson’s review of Aaronson’s
book Quantum Computing since Democritus [10]. And also this:
“the book is not really about quantum computing. It is far broader
and uses quantum computing as an opportunity to introduce a whole
set of important concepts in math, physics, philosophy, and, above
all, computational complexity theory”.

Quantum Algorithm Zoo: [11].
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Outlook Recent papers

[12]: Lecture Notes on Quantum Algorithms for Scientific
Computation.

[13]: “... we then employ the QSVT [Quantum Singular Value
Transformation] to construct intuitive quantum algorithms for search,
phase estimation, and Hamiltonian simulation, and also showcase
algorithms for the eigenvalue threshold problem and matrix inversion.
This overview illustrates how the QSVT is a single framework
comprising the three major quantum algorithms, suggesting a grand
unification of quantum algorithms.”

[14]: Quantum Computing: Lecture Notes. It contains 252
references, up to 2022.
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