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S. Xambó & N. Sayols

UPC

7/10/2017
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Roots of this talk Not yet cryptographically minded

2003: S. Xambó, Block-error correcting codes: a computdational
primer . Universitext, Springer. Computational system: Wiris/cc.

2015—: PyECC**. “Python package enabling the construction,
coding and decoding of error-correcting codes, to be freely available
for teachers and researchers”. The plan is to go beyond CC and be
able to work as easily with convolutional codes and other close
classes as easily as with algebraic block codes.

2017: Farré-Sayols-Xambó, On PGZ decoding of alternant codes.
Improved version of the classical PGZ decoding algorithm. arXiv.

2017: Molina-Sayols-Xambó, A bootstrap for the number of
Fqm-rational points on a curve over Fq. arXive.

** https://mat-web.upc.edu/people/sebastia.xambo/PyECC.html
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https://mat-web.upc.edu/people/sebastia.xambo/PyECC.html
https://arxiv.org/pdf/1704.05259.pdf
https://arxiv.org/pdf/1704.04661.pdf


Roots of this talk Cryptographically curious

2017: Error-correcting codes: mathematics and computations (SGA
UB-UAB-UPC, 5.5.2017).

All algorithms implemented in PyECC, including the best known
decoding algorithms for alternant codes.

Immediately after we began looking at the McEliece cryptosystem
based on (classical) Goppa codes (McEliece, 1978):

A public-key cryptosystem based on algebraic coding theory .

Context of that paper:

The algebraic decoding of Goppa Codes (Patterson, 1974);

New directions in cryptography (Diffie-Hellman, 1976);

RSA, 1978;

On the inherent intractability of certain coding problems
(Berlekamp-McEliece-van Tilborg, 1978).
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Roots of this talk Abstrat of the McEliece paper

Using the fact that a fast decoding algorithm exists for a general
[classical] Goppa code, while no such algorithm exists for a general
linear code, we construct a public-key cryptosystem which appears
quite secure while at the same time allowing extremely rapid data
rates. This kind of cryptosystem is ideal for use in multi-user
communication networks, such as those envisioned by NASA for the
distribution of space-acquired data.

More recent references: Proceeings PQCrypto 2008, and in particular
Attacking and defending the McEliece crytosystem
(Bernstein-Lange-Peters,2008) (pdf).

Quantum Resistant Random Linear Code Based Public Key
Encryption Scheme RLCE (Wang, 2015)(pdf)

Wikipedia
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https://cr.yp.to/codes/mceliece-20080807.pdf
https://eprint.iacr.org/2015/298.pdf
https://en.wikipedia.org/wiki/McEliece_cryptosystem


Main points

Finite fields.

Linear codes.

Coding, decoding, and error-correcting capacity.

Binary Goppa codes. Decoding algorithms.

Private and public McEliece keys. Encryption and Decryption
protocols.

Comments on the analysis of the McEliece system.

Code samples.

A quotation.
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Finite fields Number of irreducible polynomials

Fq = GF (q): finite field of q = pr elements (p prime, r > 1).

The number of monic irreducible polynomials of degree m over Fq

is given by Gauss’ formula:

Iq(m) = 1
m

∑
d |m

µ(m/d)qd = qm

m
+ · · ·

Application: the probability that a random monic polynomial of
degree m over Fq is prime is ' 1/m.

1 2 3 4 5 6 7

---------------------------------

2 1 2 3 6 9 18

3 3 8 18 48 116 312

4 6 20 60 204 670 2340

5 10 40 150 624 2580 11160

7 21 112 588 3360 19544 117648

8 28 168 1008 6552 43596 299592

9 36 240 1620 11808 88440 683280
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Finite fields PyECC computation
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Linear codes Encoding with a generating matrix

An [n, k] code over Fq is k-dimensional linear subspace C of Fn
q (n

is the length, k the dimension, and R = k/n the rate). We write
C ∼ [n, k].

A matrix G whose rows are a basis of C is called a generating
matrix of C . It is an k × n matrix and we may write C = 〈G 〉.

The linear map f : Fk
q → Fn

q, u 7→ uG is injective and its image
is C . We say that f is an encoding for C , and x = f u is called
the code vector of u.

Example (The [7,4] Hamming binary encoder)

x = u


1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 1 0 1
0 0 0 1 0 1 1
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Linear codes Dual construction

Let H be an r × n matrix of rank r . Then CH = {x ∈ Fn : xHT = 0}
is an [n, n − r ] code. The matrix H is called a control matrix of CH .

A generator matrix of CH is obtained by choosing a basis of kerHT .

Example. The matrix H =

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

 is a control

matrix of the Hamming [7, 4] code.

Indeed, G = I4|R , H = RT |I3 and GHT = (I4|R)

(
R

I3

)
= R + R = 0.

Remark . A generating matrix of the form G = Ik |R is called
systematic (with respect to the components 1, . . . , k). In this case,
H = (−RT )|In−k is a control matrix of 〈G 〉 (H = RT |In−k in the
binary case).
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Linear codes Generalized dual construction

Let H be an r × n matrix of rank r with entries in an extension field
K̄ = Fqm of K = Fq. Then we can still define

CH = {x ∈ Fn : xHT = 0},

but of its dimension k we only know, in general, a lower bound:
k > n − rm.

Indeed, to obtain a generating matrix, we have to expand H into an
rm × n matrix H̄ by substituting each entry by its expression as a
length m vector with entries in K , and take its kernel: its dimension
is k = n − rank(H̄) > n − rm.
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Linear codes PyECC example

S. Xambó & N. Sayols (UPC) ECC & PyECC 7/10/2017 11 / 21



Linear codes Decoders

A decoder is a surjective map g : Fn → C t E , where E is a set of
error messages, such that g(x) = x for all x ∈ C .

The set D = g−1(C ) ⊆ Fn is the set of g -decodable vectors. The set
Fn − D = g−1E is the set of error vectors. The decoder is complete
if D = Fn (in which case E = ∅).

The decoder has error-correcting capacity t if we have g(y) = x for
any vector y ∈ Fn such that |y − x | 6 t, where |z | is the number of
non-zero components of z (Hamming weight of z).

If we let B(x , t) = {y ∈ Fn : |y − x | 6 t} (Hamming ball of center x
and radius t), then we have ∪x∈CB(x , t) ⊆ D and g(B(x , t)) = {x}.
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Binary Goppa codes Definition and basic properties

K = Z2, K̄ = F2m , g ∈ K̄ [T ] irreducible polynomial of degree t.

Let n = 2m, α1, . . . , αn the elements of K̄ , and hj = 1/g(αj).

Then Γg = CH , where H =


h1 · · · hn

h1α1 · · · hnαn
...

...
h1α

t−1
1 · · · hnα

t−1
n

, is the

(classical) Goppa code associated to g . We have seen that
dim Γg > n − tm.

Theorem. Γg can correct t (or fewer) errors.

Remark . Γg is a special case of alternant code and so it has efficient
decoders, as BMS (Berlekamp-Massey-Sugiyama, O(nt)) and PGZ
(Petterson-Gorenstein-Zierler).
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The McEliece cryptosystem Private and public keys

Select m and t.

Pick g at random. This is done by repeatedly choosing at random
a monic polynomial g ∈ K̄ [T ] of degree t until g is irreducible.
We know that on average t trials will be sufficient. Testing for
irreducibility is done by means of the following criterion:

g is irreducible if and only if T 2t mod g = T and
gcd(T 2t/d − T , g) = 1 for all d |t, d prime.

Let G be a generating matrix of Γg , S a random non-singular
k × k matrix, and P an n × n permutation matrix.

Private key : G , S , and P .

Public key : SGP and t.
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The McEliece cryptosystem Encryption and decription protocols

Encryption:

Let u ∈ Fk (information vector)

Generate a random vector e of weight t.

Send x = uSGP + e.

Decryption:

y = xP−1 = uSG + eP−1.

The decoding of y produces the code vector x ′ = uSG .

Solve this linear relation for uS .

Get u = (uS)S−1.
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The McEliece cryptosystem Remarks on possible attacks

We assume that E , the eavesdropper, knows not only t and SGP , but
also x (after all this is the purpose of evesdropping!).

The general problem of decoding [n, k] codes is NP complete
(Berlekamp-McElice-van Tilborg, 1978). So finding u from x and
SGP is hard if [n, k] are large enough.

Select k coordinates from x at random. If they are not in error,
then we get u with about k3 operations. Since the probability that
there are no errors is (1− t/n)k , the number of expected
operations to succeed is k3(1− t/n)−k .

S. Xambó & N. Sayols (UPC) ECC & PyECC 7/10/2017 16 / 21



The McEliece cryptosystem Remarks on possible attacks
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Code samples Permutation matrix P

PyECC

def permutation_matrix(n):

N = list(range(n))

p = rd_choice(N,n)

P = create_matrix(ZZ(),n,n)

for j in range(n):

P[j,p[j]] = 1

return P
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Code samples Scrambling matrix S

def scramble_matrix(A,k):

U = create_matrix(A,k,k)

L = create_matrix(A,k,k)

for i in range(k):

U[i,i] = L[i,i] =1

for j in range(i+1,k):

U[i,j] = rd(A)

L[j,i] = rd(A)

return U*L
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Code samples Working with Goppa codes

F5 = Zn(5)

# Creation of F25, with generator x

[F25,x] = extension(F5,[1,0,-2],’x’,’F25’)

# Creation of the polynomial ring F25[T]

[A,T] = polynomial_ring(F25,’T’)

g = T**6 + T**3 + T +1

a = Set(F25)[1:] # The non-zero elements of F25

a = [t for t in a if evaluate(g,t)!=0]

C = Goppa(g,a)

# generate a random error pattern of weight 3

e = rd_error_vector(Z5,n,3)

>> e = [0,1,0,0,0,3,0,4,0,0,0,0,0,0,0,0,0,0,0]

# Use the PGZ decoder for C

PGZ(e,C)

>>PGZ: Error positions [1,5,7], error values [1,3,4]

[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] :: Vector[Z5]
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Ending (with a quotation)

The McEliece cryptosystem was proposed by McEliece in 1978 [10]
and the original version, using Goppa codes, remains unbroken.
Quantum computers do not seem to give any signicant improvements
in attacking code-based systems, beyond the generic improvements
possible with Grover’s algorithm, and so the McEliece encryption
scheme is one of the interesting candidates for post-quantum
cryptography. Bernstein-Lange-Peters-2008.
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